K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Hạ BE \(\perp CD\)

Khi đó tính đc: \(\widehat{BED}=90^o\)

\(\Rightarrow\) Hình ABED có dạng hình chữ nhật (hình vuông)

=> AD = BE

Do \(BE\perp CE\)

\(\Rightarrow BE< BC\)

\(\Rightarrow AD< BC.\)

12 tháng 5 2022

\(a,\dfrac{a}{b}=\dfrac{ad}{bd}\) và \(\dfrac{c}{d}=\dfrac{bc}{bd}\). Do \(\dfrac{a}{b}< \dfrac{c}{d}\) nên \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\).

Suy ra \(ad< bc\)

\(b,\dfrac{a}{b}< \dfrac{c}{d}\) suy ra \(ad< bc\). Do đó \(ab+ad< ab+bc\) nên \(a\left(b+d\right)< b\left(a+c\right)\) 

Vậy \(\dfrac{a}{b}< \dfrac{a+c}{b+d}.\) Từ \(ad< bc\) ta cũng có \(ad+cd< bc+cd\) nên \(\left(a+c\right)d< \left(b+d\right)c\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\)

b) Sửa đề: AI là tia phân giác của \(\widehat{A}\)

Xét ΔABI vuông tại I và ΔACI vuông tại I có 

AB=AC(ΔABC cân tại A)

AI chung

Do đó: ΔABI=ΔACI(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)

mà tia AI nằm giữa hai tia AB,AC

nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)

a) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)

mà d là đường trung trực của BC(gt)

nên A\(\in\)d

9 tháng 5 2021

A B C D

a) Xét ABD và EBD có

        BD cạnh chung

        BAD=BED(=90)

        ABD=EBD(vì BD là tia phân giác của B)

b ko biet

 

9 tháng 5 2021

b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Vì BD là tia phân giác của góc ABC nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}.\widehat {ABC}\)

Vì CD là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}.\widehat {ACB}\)

Xét \(\Delta BDP\) vuông tại P và \(\Delta BDR\) vuông tại R, ta có:

 \(\widehat {{B_2}} = \widehat {{B_1}}\)

BD chung

\( \Rightarrow \Delta BDP = \Delta BDR\) ( cạnh huyền – góc nhọn)

\( \Rightarrow \) DP = DR ( 2 cạnh tương ứng) (1)

b) Xét \(\Delta CDP\) vuông tại P và \(\Delta CDQ\) vuông tại Q, ta có:

 \(\widehat {{C_2}} = \widehat {{C_1}}\)

CD chung

\( \Rightarrow \Delta CDP = \Delta CDQ\) ( cạnh huyền – góc nhọn)

\( \Rightarrow \) DP = DQ ( 2 cạnh tương ứng) (2)

c) Từ (1) và (2), ta được: DR = DQ ( cùng bằng DP).

D nằm trên tia phân giác của góc A do D cách đều AB và AC.

20 tháng 4 2020

H B C A D

a) xét  \(\Delta HAC:\widehat{H}=90^o\)

\(\Rightarrow AH^2+HC^2=AC^2\)(đlý pytago)(1)

xét tam giác \(BHC:\widehat{H}=90^o\)

\(BH^2+HC^2=BC^2\)(đlý pytago)(2)

vì \(A\in BH\Rightarrow AH< BH\Rightarrow AH^2< BH^2\)(3)

từ (1);(2) và (3) 

\(\Rightarrow BC^2>AC^2\Rightarrow BC>AC\)

b) xét tam giác \(AHD:\widehat{H}=90^o\)\(\Rightarrow AH^2+HD^2=AD^2\)(đ/lý pytago)(4)

lại có \(D\in HC\Rightarrow HD< HC\Rightarrow HD^2< HC^2\)(5)

từ  (2);(4) và (5)

=>\(BC^2>AD^2\Rightarrow BC>AD\)

a: Sửa đề: tính AB

AB=căn 5^2-3^2=4cm

b: Xét ΔABC vuông tại A và ΔABD vuông tại A có

AB chung

AC=AD

=>ΔABC=ΔABD

c: ΔABC=ΔABD

=>BC=BD

=>ΔBCD cân tại B

3 tháng 10 2016

ta có a/b=c/d nên ad=bc ( tính chất nhân chéo của phân số)

 

12 tháng 9 2017

a/b=c/d

a/c=b/d

d/c=b/a

d/b=c/a

Vì sao mk chịu

4 tháng 4 2016

b) 

do tam giác ABC  vuông tại A , mà ta có : D nằm giữa A , B  , suy ra : AD + DB = AB 

suy ra : 3 + DB  = 4 

suy ra : DB = 4-3=1 (cm)

Theo giả thiết ta có : AC =3 (cm)

và AB = 3 (cm) 

suy ra : tam gác : ADC vuông cân tại A 

vậy  : góc ACD = góc ADC ( 2 góc ở đáy bằng nhau ) 

c )

nối M với D 

Xét tam giác ADM  và tam giác ACM  có :

góc DAM = góc CAM ( AM tia p/g của góc A )

AM cạnh chung 

AB = AC ( c/m câu a )

suy ra : tam giác ADM = tam giác ACM ( c-g-c)

suy ra :MD = MC ( 2 cạnh tương ứng )

xin lỗi nha tui ms làm đc vậy thôi mà không biết có đúng ko nữa 

nếu sai thì xl bn nha

17 tháng 4 2016

ngu 

a) xét tam giác abc có bc^2=ac^2+ab^2 (định lý pi-ta-go )

5^2=3^2+4^2

25=9+16

vậy tam giác abc là tam giác vuông

2 câu còn lại tự túc

25 tháng 7 2019

Sử dụng tính chất của dãy tỉ số bằng nhau đó bạn