Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I S D E F G K L K' M x
Gọi giao điểm khác D của hai đường tròn (BED);(CFD) là K'; K'I cắt EF tại L; DL cắt (I;ID) tại M khác D.
Ta thấy IE = IF; AI là phân giác ngoài của ^EAF, từ đây dễ suy ra 4 điểm A,E,I,F cùng thuộc một đường tròn
Vì 3 điểm D,F,E lần lượt thuộc các cạnh BC,CA,AB của \(\Delta\)ABC nên (BED);(CFD);(AFE) đồng quy (ĐL Miquel)
Hay điểm K' thuộc đường tròn (AIFE). Do vậy LI.LK' = LE.LF = LD.LM (= PL/(G) = PL/(I) )
Suy ra 4 điểm K',M,I,D cùng thuộc một đường tròn. Mà ID = IM nên ^IK'D = ^IK'M.
Đồng thời ^DIM = 1800 - ^DK'M = 1800 - ^EK'F + 2.^FK'D = ^BAC + 2.^ACB = 2.^AID
Suy ra IA vuông góc DM, từ đó M,L,D,A thẳng hàng (Vì IA cũng vuông góc AD)
Khi đó dễ thấy AL là phân giác ^BAC, K'L là phân giác ^EK'F, mà tứ giác AEK'F nội tiếp
Suy ra AEK'F là tứ giác điều hòa, từ đây AK' là đường đối trung của \(\Delta\)AEF
Suy ra K' trùng K. Kẻ tiếp tuyến Kx của (G), ta có ^BKx = ^EKx - ^EKB = ^EFK - ^EFD = ^BCK
Do đó (BKC) tiếp xúc với (G) tại K, tức KG đi qua tâm của (BKC) (1)
Gọi S là trung điểm cung lớn BC của (ABC). Có SB = SC và ^BKC = ^AED + ^AFD = 1800 - ^BSC/2
Suy ra S là tâm của đường tròn (BKC) (2)
Từ (1) và (2) suy ra KG luôn đi qua S cố định (Vì S là trung điểm cùng BC lớn cố định) (đpcm).
G là trọng tâm tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}3=\dfrac{x_A-1+x_C}{3}\\1=\dfrac{y_A+0+y_C}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A+x_C=10\\y_A+y_C=3\end{matrix}\right.\)
Gọi I là giao điểm của AC và BD.
ABCD là hình bình hành
\(\Rightarrow\) I là trung điểm của AC, I là trung điểm của BD.
I là trung điểm của AC \(\Rightarrow I\left(5;\dfrac{3}{2}\right)\).
I là trung điểm của BD
\(\Rightarrow\left\{{}\begin{matrix}5=\dfrac{-1+x_D}{2}\\\dfrac{3}{2}=\dfrac{0+y_D}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=11\\y_D=3\end{matrix}\right.\)
\(\Rightarrow D\left(11;3\right)\).
ủa thế rồi không cần phải tính tọa độ A và C hả, lúc tôi đang nháp thì thấy cần phải tính nhưng quá nhiều biến nên là tôi đã giậm chầm tại đây
a: vecto AB=(2-m;-2)
vecto AC=(-4-m;2)
Để A,B,C ko thẳng hàng thì \(\dfrac{2-m}{-4-m}< >\dfrac{-2}{2}=-1\)
=>2-m<>m+4
=>-2m<>2
=>m<>-1
b: Tọa độ trọng tâm là:
\(\left\{{}\begin{matrix}x=\dfrac{m+2-4}{3}=\dfrac{m-2}{3}\\y=\dfrac{3+1+5}{3}=3\end{matrix}\right.\)
Để M nằm trên d thì \(\left\{{}\begin{matrix}\dfrac{m-2}{3}=t+1\\5-2t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=1\\m-2=3\cdot2=6\end{matrix}\right.\Leftrightarrow m=8\)
a: vecto AB=(2-m;-2)
vecto AC=(-4-m;2)
Để A,B,C ko thẳng hàng thì \(\dfrac{2-m}{-4-m}< >\dfrac{-2}{2}=-1\)
=>2-m<>m+4
=>-2m<>2
=>m<>-1
b: Tọa độ trọng tâm là:
\(\left\{{}\begin{matrix}x=\dfrac{m+2-4}{3}=\dfrac{m-2}{3}\\y=\dfrac{3+1+5}{3}=3\end{matrix}\right.\)
Để M nằm trên d thì \(\left\{{}\begin{matrix}\dfrac{m-2}{3}=t+1\\5-2t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=1\\m-2=3\cdot2=6\end{matrix}\right.\Leftrightarrow m=8\)