Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
32+n -22+n +3n -2n+3n-2n =32 .3n -22 .2n +3n -2n
=9.3n -4.2n +3n -2n
=(9.3n +3n) -4.2n -2n
=3n (9+1) - (4.2n +2n)
=3n .10 - 2n (4+1)
=3n .10 - 2n .5
; 2n chia hết cho 2; 5 chia hết ch3n .10 - 2n .5o 5 nên 2n .5 chia hết cho 10 và 3n .10 chia hết cho 10
nên 3n .10 - 2n .5 chia hết cho 10
32+n -22+n +3n -2n+3n-2n =32 .3n -22 .2n +3n -2n
=9.3n -4.2n +3n -2n
=(9.3n +3n) -4.2n -2n
=3n (9+1) - (4.2n +2n)
=3n .10 - 2n (4+1)
=3n .10 - 2n .5
; 2n chia hết cho 2; 5 chia hết ch3n .10 - 2n .5o 5 nên 2n .5 chia hết cho 10 và 3n .10 chia hết cho 10
nên 3n .10 - 2n .5 chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\) \(⋮\)\(10\)
Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=9\times3^n-4\times2^n+3^n-2^n\)
\(=10\times3^n-5\times2\times2^{n-1}\)
\(=10\times\left(3^n-2^{n-1}\right)\)
\(\Rightarrow\)\(3^{n+2}-2^{n+2}+3^n-2^n\)\(⋮\)10
3n+2-2n+2+3n-2n=3n+2+3n-2n+2-2n=3n.32+3n-2n.22-2n=3n.(32+1)-2n(22+1)=3n.10-2n.5=3n.10-2n-1.10=10.(3n-2n-1)
=>3n+2-2n+2+3n-2n chia hết cho 10
3^2 + 2 - 2^n + 2 + 3^n - 2^n
= 3^n ( 1 + 3^n ) - 2^n ( 2^2 + 1 )
= 3^n.10 - 2^n.5
= 3^n.10 - 2^n - 1.10
Với x > 0 ta luôn có 3^n chia hết 10,2^n - 1.10 chia hết 10 nên 3^n.10 - 2^n - 1.10 chia hết cho 10 do vậy 3^n + 2^2 + 2 + 3^n - 2^2n chia hết 10
3n+2 - 2n+2 + 3n -2n = 3n(32 + 1) - 2n(22 + 1) = 10*3n - 5*2n= 10*3n-10*2n-1 = 10*(3n-2n-1) chia hết cho 10
Ta có:3n+2-2n+2+3n-2n
=3n+2+3n-(2n+2+2n)
=3n.32+3n-(2n.22+2n)
=3n.(32+1)-2n(22+1)
=3n.10-2n-1.2.5
=3n.10-2n-1.10
=(3n-2n-1).10 chia hết cho 10(đpcm)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\)chia hết cho 10.
3n+2-2n+2+3n-2n
=(3n+2+3n)+(-2n+2-2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
10.(3n-2n-1) chia hết cho 10
=> chia hết cho 10
Sửa đề:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)\)
b tự làm nốt nhé~
\(với\forall n\inℕ^∗\)
Chứng minh : \(3^{n+2}-\left(2^{n+2}:3^n\right)-2^n\)=\(3^n.9-\left(2^n.4:3^n\right)-2^n\)=Tự làm
\(3^{n-2}-2^{n+2}+3^n-2^n\)
=\(3^n:9-2^n.4+3^n-2^n\)
=\(\left(3^n:9+3^n\right)-\left(2^n.4+2^n\right)\)
=\(3^n\left(\frac{1}{9}+1\right)-2^n\left(4+1\right)\)
=\(3^n.\frac{10}{9}-2^n.5\)
=\(\frac{3^2.3^{n-2}.10}{9}-2^{n-1}.2.5\)
=\(3^{n-2}.10-2^{n-1}.10\)
=\(\left(3^{n-2}-2^{n-1}\right).10\)\(⋮10\)
=>.....(tự biết)
Ta có:
3n-2-2n-2+3n-2n=3n:32-2n.22+3n-2n=3n:9-2n.4+3n-2n(1)
*Giả sử: n=2 => (1)=9:9-4.4+9-4=1-16+9-4=-15+9-4=-10(vì -10 chia hết cho 10 nên n có thể = 2)(2)
*Giả sử: n=3 => (1)=27:9-8.4+27-8=3-32+27-8=-29+27-8=-2-8=-10(vì -10 chia hết cho 10 nên n có thể = 3)(3)
*Giả sử: n=4 => (1)=81:9-16.4+81-16=9-64+81-16=-55+81-16=26-16=10(vì 10 chia hết cho 10 nên n có thể = 4)(4)
Tiếp tục áp dụng quy luật trên, ta được:
Từ (2), (3), (4),... ta được: Mọi số nguyên dương n thì 3n-2-2n+2+3n-2n chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\forall n\in Z^+\)
3\(^{n+2}\)- 2\(^{n+2}\)+3\(^n\)- 2\(^n\)
= 3\(^n\). 3\(^2\)- 2\(^n\). 2\(^2\)+3\(^n\)-2\(^n\)
= 3\(^n\).9 - 2\(^n\).4+3\(^n\)-2\(^n\)
= ( 3\(^n\).9 + 3\(^n\)) - (2\(^n\).4+2\(^n\))
=3\(^n\).10 - 2\(^n\).5
=10.(3\(^n\)-2\(^n\).\(\dfrac{1}{2}\)) \(⋮\)10 (đpcm)
Chúc bn học tốt nha!!!!!!!