Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)
=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)
=> \(15-x+x-12-5+x=7\)
=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)
=> \(\left(15-12-5\right)-7=3x\)
=> \(3x=-2-7\)
=> \(3x=-9\)
=> \(x=\frac{-9}{3}=-3\)
b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)
=> \(x-57-42-23-x=13-47+25-32+x\)
=> \(x-x+x=13-47+25-32+57+42+23\)
=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)
=> \(x=36-104+82-74\)
=> \(x=-60\)
d/ \(\left(x-3\right)\left(2y+1\right)=7\)
Vì 7 là số nguyên tố nên ta có 2 trường hợp:
TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).
TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).
Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).
a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |
Bài 1: a) min B=50 (vì |y-3|>=0) khi |y-3|=0=> y=3
b) tương tự min C=-1 khi x=100 và y=-200
b: \(\Leftrightarrow\left(x-3;y+2\right)\in\left\{\left(1;11\right);\left(11;1\right);\left(-1;-11\right);\left(-11;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(4;9\right);\left(14;-1\right);\left(2;-13\right);\left(-8;-3\right)\right\}\)
c: \(\Leftrightarrow x\left(y-3\right)-y+3=3\)
=>(y-3)(x-1)=3
\(\Leftrightarrow\left(x-1;y-3\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
a. -(x-3)+2.(-3)=1
\(\Leftrightarrow\)-x+3-6=1
\(\Leftrightarrow\)x=-4
b.(x+1).(y-2)=11
\(\Rightarrow\)x+1 và y-2 \(\in\)Ư(11)=\(\left\{1;-1;11;-11\right\}\)
Ta có:
\(\left\{\begin{matrix}x+1=1\\x+1=-1\\x+1=11\\x+1=-11\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=0\\x=-2\\x=10\\x=-12\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}y=13\\y=-9\\y=3\\y=1\end{matrix}\right.\)
Vậy: x=0 thì y=13; x=-2 thì y=-9;x=10 thì y=3; x=-12 thì y=1
c.(y+3)(2x-10)=0
\(\Leftrightarrow\)y+3=0 hoặc 2x-10=0
1, y+3=0\(\Rightarrow\)y=-3
2, 2x-10=0\(\Rightarrow\)x=5