K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

ban tu ve hinh nha

c) tam giac AIE dong dang tam giac ACB(g-g)

=> \(\frac{AE}{AB}=\frac{AI}{AC}\Rightarrow AE\cdot AC=AI\cdot AB\)

tam giac BIE dong dang tam giac BMA(g-g)

\(\Rightarrow\frac{BE}{BA}=\frac{BI}{BM}\Rightarrow BE\cdot BM=BI\cdot BA\)

S=AE*AC+BE*BM

= AI*AB+BI*AB

=AB(AI+IB)=AB*AB=100

còn câu d) thì mình không nhớ rõ cách làm vì lâu quá không học quỹ tích nên quên hết rồi. bạn tự nghĩ đi nhà mà không nghĩ được thì de cô giáo chưa

2 tháng 1 2017

Thanks nhiều :)

7 tháng 5 2018

yeu có đáp án chưa ạ ? cho tui tham khảo với

6 tháng 3 2020


A B C M H I E K P Q

Kẻ MH cắt (O) tại P, EI cắt (O) tại Q

Xét (O) có: \(\left\{{}\begin{matrix}MP\perp AO=\left\{H\right\}\\AO=R\end{matrix}\right.\)

\(\Rightarrow MH=HP\)

\(\Rightarrow\) \(s\bar{d}\stackrel\frown{MA}=s\bar{d}\stackrel\frown{AP}\)

Lại có: \(\widehat{AMC}=s\bar{d}\stackrel\frown{AC}/2\) (đl góc nội tiếp) (!)

\(\widehat{AKM}=(s\bar{d}\stackrel\frown{AM}+s\bar{d}\stackrel\frown{CP})/2\) (đl góc có đỉnh bên trong đường tròn)

( mà \(s\bar{d}\stackrel\frown{AM}=s\bar{d}\stackrel\frown{AP}\) )

\(\Leftrightarrow\) \(\widehat{AKM}=(s\bar{d}\stackrel\frown{AP}+s\bar{d}\stackrel\frown{PC})/2=s\bar{d}\stackrel\frown{AC}/2\) (!!)

Từ (!) (!!) \(\Rightarrow\) \(\widehat{AKM}=\widehat{AKM}\)

Xét ΔAKM∼ΔAMC vì:

\(\widehat{AKM}=\widehat{AKM}(cmtrn)\)

\(\widehat{MAC}:chung\)

\(\Rightarrow\frac{AM}{AC}=\frac{AK}{AM}\) \(\Leftrightarrow AK.AC=AM^2\) (đpcm)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đo: ΔABC vuông tại C

Xét (O)có

ΔAMB nội tiếp

AB là đường kính

Do đo ΔAMB vuông tại M

Xét tứ giác BHKC có \(\widehat{BHK}+\widehat{BCK}=180^0\)

nên BHKC là tứ giác nội tiếp

Xét tứ giác AIEM có \(\widehat{AIE}+\widehat{AME}=180^0\)

nên AIEM là tứ giác nội tiếp

b: Xét ΔAKM và ΔAMC có

góc KAM chung

góc AMK=góc ACM

Do đó: ΔAKM\(\sim\)ΔAMC

SUy ra: AK/AM=AM/AC
hay \(AM^2=AK\cdot AC\)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đo: ΔABC vuông tại C

Xét (O)có

ΔAMB nội tiếp

AB là đường kính

Do đo ΔAMB vuông tại M

Xét tứ giác BHKC có \(\widehat{BHK}+\widehat{BCK}=180^0\)

nên BHKC là tứ giác nội tiếp

Xét tứ giác AIEM có \(\widehat{AIE}+\widehat{AME}=180^0\)

nên AIEM là tứ giác nội tiếp

b: Xét ΔAKM và ΔAMC có

góc KAM chung

góc AMK=góc ACM

Do đó: ΔAKM\(\sim\)ΔAMC

SUy ra: AK/AM=AM/AC
hay \(AM^2=AK\cdot AC\)

đề bài bị khuyết tật rồi kìa

9 tháng 4 2019

Góc với đường tròn

a) Ta có: \(\widehat{OAM}=\widehat{OCM}=90^o\) ( MA và MC là các tiếp tuyến của (O))

\(\Rightarrow\widehat{OAM}+\widehat{OCM}=180^o\)

\(\widehat{OAM}\)\(\widehat{OCM}\) đối nhau

Nên tứ giác AMCO nội tiếp

Ta lại có: OA = OC = R \(\Rightarrow\Delta AOC\) cân tại O (1)

Mà OM là phân giác của \(\widehat{AOC}\) ( MA và MC là tiếp tuyến) (2)

Từ (1), (2) \(\Rightarrow OM\) cũng là đường cao của \(\Delta AOC\)

\(\Rightarrow OM\perp AC\)

\(\Rightarrow\widehat{AEM}=90^o\) (3)

Mặt khác \(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn (O))

\(\Rightarrow\widehat{MDA}=90^o\) (4)

Mà D và E cùng nhìn cạnh MA (5)

Từ (3), (4), (5) \(\Rightarrow\) Tứ giác AMDE nội tiếp (6)

b) Từ (6) \(\Rightarrow\widehat{EDB}=\widehat{EAM}\) (góc ngoài) (7)

\(\widehat{EAM}=\widehat{EOA}\) (cùng phụ với \(\widehat{EAO}\)) (8)

Từ (7), (8) \(\Rightarrow\) \(\widehat{EDB}=\widehat{EOA}\)

Nên tứ giác OEDB nội tiếp

\(\Rightarrow\widehat{EOD}=\widehat{DBE}\)

Hay \(\widehat{MOD}=\widehat{MBE}\) (9)

\(\widehat{DME}\) là góc chung của \(\Delta MDO\)\(\Delta MEB\) (10)

Từ (9), (10) \(\Rightarrow\Delta MDO\sim\Delta MEB\) (G - G)

c) Ta có: \(\left\{{}\begin{matrix}CH\perp AB\left(gt\right)\left(11\right)\\MA\perp AB\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow CH\) // MA (12)

\(\Rightarrow\widehat{ECI}=\widehat{EAM}\) (13)

Từ (7), (13) \(\Rightarrow\widehat{EDB}=\widehat{ECI}\) hay \(\widehat{EDI}=\widehat{ECI}\) (14)

Mà D và C cùng nhìn cạnh EI (15)

Từ (14), (15) \(\Rightarrow\) Tứ giác EDCI nội tiếp

\(\Rightarrow\widehat{DCE}=\widehat{DIE}\) (góc nội tiếp cùng chắn \(\stackrel\frown{ED}\) của đường tròn ngoại tiếp EDCI) (16)

\(\widehat{DCA}=\widehat{DBA}\) (góc nội tiếp cùng chắn \(\stackrel\frown{AD}\) của (O)) hay \(\widehat{DCE}=\widehat{DBA}\left(17\right)\)

Từu (16), (17) \(\Rightarrow\widehat{DIE}=\widehat{DBA}\)

Mà 2 góc trên ở vị trí đồng vị

\(\Rightarrow EI\) // AB (18)

Từ (11), (18) \(\Rightarrow CH\perp EI\) (19)

Từ (12), (19) \(\Rightarrow EI\perp MA\)