K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

Gọi d là ƯCLN(3n+4,n+1)

Ta có: \(\begin{cases}3n+4⋮d\\n+1⋮d\end{cases}\) => \(\begin{cases}3n+4⋮d\\3\left(n+1\right)⋮d\end{cases}\) => \(\begin{cases}3n+4⋮d\\3n+3⋮d\end{cases}\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)

\(\Rightarrow3n+4-3n-3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> ƯCLN(3n+4,n+1) = d

=> 3n+4 và n+1 là hai số nguyên tố cùng nhau

24 tháng 12 2016

Gọi ƯCLN(3n + 4 , n + 1 ) = d

→ 3n + 4 chia hết cho d và n + 1 chia hết cho d

3n + 4 chia hết cho d và 3 (n + 1) chia hết cho d

→ 3n + 4 chia hết cho d và 3n + 3 chia hết cho d

→ (3n + 4 ) - (3n + 3) chia hết cho d

→ 1 chia hết cho d

→ d = 1

Vậy hai số 3n+4 và n+1 là hai số nguyên tố cùng nhau.

Giúp mình nhé!

Vậy

14 tháng 11 2017

a)  Gọi ƯCLN(3n+1,6n+1)=d

=> 3n+1 và 6n+1 chia hết chưa d

=> 2(3n+1) và 6n+1 chia hết chưa d

=>6n+2 và 6n+1 chia hết cho d

=>(6n+2)-(6n+1)=1 chia hết cho d

=>d=1

=> 3n+1 và 6n+1 nguyên tố cùng nhau

b, Gọi ƯCLN(2n+3,3n+4)=d

=>2n+3 và 3n+4 chia hết cho d

=>3(2n+3) và 2(3n+4) chia hết cho d

=>6n+9 và 6n+8 chia hết cho d

=>(6n+9)-(6n+8)=1 chia hết cho d

=>d=1

=>2n+3 và 3n+4 nguyên tố cùng nhau

30 tháng 10 2016

bạn chờ mình chút

30 tháng 10 2016

a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra: 
3n+4 chia hết cho d ; 2n+3 chia hết cho d 
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d      (1)
Lại có : 3.(2n+3) :d 
=> 6n+9 : d      (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d

=> 1 : d

=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

22 tháng 12 2019

mk chắc chắn 100% là mk ko bt

a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\) 

\(\Rightarrow n+2;n+3NTCN\)

b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)

\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2n+3;3n+5NTCN\)

20 tháng 12 2018

Bài 1:

Ta có: \(2+2^2+2^3+...+2^{2010}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right).\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(2+2^2+2^3+...+2^{2010}=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

bài 2:

Gọi d là ƯCLN của 2n+3 và 3n+4 \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}1⋮d\Rightarrow d=1}\)

\(\RightarrowƯCLN\left(2n+3;3n+4\right)=1\)

\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

23 tháng 7 2016

a)Gọi 2 số tự nhiên liên tiếp là a;a+1

=>a+1-a  chia hết cho WCLN của a;a+1

=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

b)Gọi 2 số lẻ liên tiếp là a;a+2.

Làm như trên:

Hiệu:a+2-a=2

Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.

Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.

Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.

c)Gọi WCLN(2n+1;3n+1)=d.

2n+1 chia hết cho d=>6n+3 chia hết cho d.

3n+1 ------------------=>6n+2 chia hết cho d.

Hiệu chia hết cho d,hiệu =1=>...

Vậy là số nguyên tố cùng nhau.

Chúc em học tốt^^

16 tháng 9 2021

n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1

Gọi ƯCLN(n+1;3n+4)=d

=> [(n+1)+(3n+4)] chia hết cho d

=> 1 chia hết cho d => d=1

=> ƯCLN(n+1;3n+4)=1

Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau