Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+3)(x2-16)(x3-8)(x4-9)=0
<=>có 4 TH
TH1:x+3=0=>x=-3
TH2:x2-16=0=>x2=16=>x E {-4;4}
TH3:x3-8=0=>x3=8=>x=2
TH4:x4-9=0=>x4=9(loại)
Tổng các giá trĩ của x là:(-4)+4+2+(3)=0+2+(-3)=2+(-3)=-1
Câu 1: Giá trị của x thỏa mãn
|x+2,37|+|y−5,3|=0
Để GTBT bằng 0 thì |x+2,37| = 0 và |y−5,3| = 0
-> x = -2,37 , y = 5,3
Vậy x = -2,37
Câu 2: Giá trị của y thỏa mãn
−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0
-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)
-> |y−1,37| = 0 -> y = 1,37
Vậy y = 1,37
\(\left(x-\frac{3}{5}\right).\left(x+\frac{2}{7}\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}\text{hoặc}\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}\text{hoặc}\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}-\frac{2}{7}< x< \frac{3}{5}\\x\in\varnothing\end{cases}}\)
\(\Rightarrow-\frac{2}{7}< x< \frac{3}{5}\)
\(\Rightarrow x=0\)
Vậy x = 0
\(\left(x-\frac{3}{5}\right)\cdot\left(x+\frac{2}{7}\right)< 0\)
TH1 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}}\) \(\Rightarrow\text{ }-\frac{2}{7}< x< \frac{3}{5}\)
TH2 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}\) \(\Rightarrow\text{ Không xảy ra}\)
Vì \(x\in Z\text{ }\Rightarrow\text{ }x=0\)
=>*x+3=0 =>x=-3
*x^2-16=0=>x=4;-4
*x^3-8=0=>x=2
x^4-9=0=>x=căn 3;-căn 3
=>tổng các giá trị của x là -1
Ta có : (x + 3) (x2 - 16) (x3 - 8) (x4 - 9) = 0
Có 4 TH xảy ra :
TH1 : x + 3 = 0 => x = -3
TH2 : x2 - 16 = 0 => x2 = 16 => x = ±4
TH3 : x3 - 8 = 0 => x3 = 8 => x = 2
TH4 : x4 - 9 = 0 => x4 = (x2)2 = 9 => x2 = ±3 (ko thoả mãn)
Tổng các giá trị x thỏa mãn là : -3 + 4 - 4 + 2 = -1
\(\left(x^2-2x\right)\left|3x-7\right|=0\)
=> TH1: \(x^2-2x=0\) => \(x\left(x-2\right)=0\)
=> x = 0 hoặc 2
TH2: \(3x-7=0\)
=> \(3x=-7\) => \(x=-\frac{3}{7}\)
Vậy có 3 giá trị x thoả mãn
(x2-2x)*|3x-7|=0
=>x2-2x=0 hoặc |3x-7|=0
Xét x2-2x=0 =>x(x-2)=0
=>x=0 hoặc 2
Xét |3x-7|=0 =>3x-7=0
=>3x=7
=>x=7/3
Vậy có 3 giá trị x thỏa mãn