Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath
1)
Ta có :
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{1}{c}.\frac{2}{1}=\frac{\left(a+b\right)}{ab}\)
\(\Leftrightarrow\frac{2}{c}=\frac{\left(a+b\right)}{ab}\)
\(\Leftrightarrow2ab=ac+bc\) (1)
Lại có :
\(\frac{a}{b}=\frac{a-c}{c-b}\)
\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Leftrightarrow ac-ab=ab-bc\)
\(\Leftrightarrow2ab=ac+bc\) (2)
Từ (1) và (2) :
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
Lời giải:
$(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})=2007.90$
$\Rightarrow \frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{c+a}=180630$
$\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=180630$
$\Rightarrow M+1+1+1=180630$
$\Rightarrow M =180627$
Ta có :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=259.15=3885\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=3885-3=3882\)
Lời giải:
Nếu $a+b+c=0$ thì $\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=-2$ (đúng với ycđb)
Khi đó:
$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(-c)(-a)(-b)}{abc}=\frac{-abc}{abc}=-1$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1$
$\Rightarrow a+b=2c; b+c=2a; c+a=2b$
$\Rightarrow 3a=3b=3c=a+b+c$
$\Rightarrow a=b=c$
Khi đó:
$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{2a.2b.2c}{abc}=8$
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2015.\frac{1}{90}-3=19\frac{7}{18}\)