Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
nên x + 1 = 0 => x = -1
Vậy x = -1
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(1+\frac{x+4}{2000}+1+\frac{x+3}{2001}=1+\frac{x+2}{2002}+1+\frac{x+1}{2003}\)
\(\frac{2004+x}{2000}+\frac{2004+x}{2001}=\frac{2004+x}{2002}+\frac{2004+x}{2003}\)
\(\frac{2004+x}{2000}+\frac{2004+x}{2001}-\frac{2004+x}{2002}-\frac{2004+x}{2003}=0\)
\(\left(2004+x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\)
nên 2004 + x = 0 => x = -2004
Vậy x = -2004
=))
2.
a) Ta có:
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right)\left(\frac{1}{13}+\frac{1}{14}\right)\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)nên \(x+1=0\Leftrightarrow x=-1\)
Vậy x = -1
b) Ta có:
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}\right)=\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{2003}\right)\)
Vì \(\frac{1}{2000}+\frac{1}{2001}\ne\frac{1}{2002}+\frac{1}{2003}\)nên \(x+2004=0\Leftrightarrow x=-2004\)
Vậy, x = -2004
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)
Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)
a)ta có : x+1/10+x+1/11+x+1/12=x+1/13+x+1/14
nên x+1/10+x+1/12+x+1/12 -x+1/13 -x+1/14=0
(x+1) (1/10+1/11+1/12-1/13-1/14) =0
dễ thấy 1/10+1/11+1/12-1/13-1/14 >0 nên x+1=0 nên x= -1
b) x+4/2000+x+3/2001=x+2/2002+x+1/2003
nên x+4/2000+x+3/2001-x+2/2002-x+1/2003=0
nên ta cộng mỗi 1 vào mỗi phân số sau đó lấy x+2004 làm nhân tử chung
Vì máy tính không tiện viết nên bạn cố gắng hiểu nhé
c)
A=3n+9/n-4
=3(n-4) +21/n-4
=3+21/n-4
để A thuộc Z thì n-4 thuộc Ư(21)
B= 6n+5/2n-1= 3(2n-1)+8 /2n-1
=3+8/2n-1
nên 2n-1 thuộc ước của 8
d)2x(x-1/7)=0 nên 2x=0 nên x=0
x-1/7 =0 nên x=1/7
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\) (cộng cả 2 vế với 2)
\(\Leftrightarrow\)\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0\)
\(\Leftrightarrow x=2004\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
<=> \(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
<=> \(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
<=> x+2004=0
<=> x=-2004
a) (x+1)/10+(x+1)/11+(x+1)/12=(x+1)/13+(x+1)/14
(x+1)/10+(x+1)/11+(x+1)/12-(x+1)/13-(x+1)/14=0
(x+1)(1/10+1/11+1/12-1/13-1/14)=0 (1)
thay 1/10>1/13
1/11>1/14
1/12>0
suy ra 1/10+1/11+1/12>1/13+1/14
suy ra 1/10+1/11+1/12-1/13-1/14>0
suy ra 1/10+1/11+1/12-1/13-1/14 khac 0
nền (1) tương dương x+1=0
tương dương x=-1
Vay x=-1
b) (x+4)/2000+(x+3)/2001=(x+2)/2002+(x+1)/2003
(x+4)/2000+(x+3)/2001-(x+2)/2002-(x+1)/2003=0
[(x+4)/2000+1]+[(x+3)/2001+1]-[(x+2)/2002+1]-[(x+1)/2003+1]=0
(x+2004)/2000+(x+2004)/2001-(x+2004)/2002-(x+2004)/2003=0
(x+2004)(1/2000+1/2001-1/2002/1/2003)=0 (2)
thay 1/2000>1/2002
1/2001>1/2003
suy ra 1/2000+1/2001>1/2002+1/2003
suy ra 1/2000+1/2001-1/2002-1/2003>0
suy ra 1/2000+1/2001-1/2002-1/2003 khac 0
nen (2) tuong duong x+2004=0
tuong duong x=-2004
Vay x=-2004
ttttttttttttttttttttttt