Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức = (x^2+y^2+2xy)-2.(x+y).1/2+1/4 - 49/4
= (x+y)^2-2.(x+y).1/2+1/4 - 49/4
= (x+y-1/2)^2 - 49/4
= (x+y-1/2-7/2).(x+y-1/2+7/2)
= (x+y-4).(x+y+3)
k mk nha
\(x^3-x^2-21x+45\)
\(=\left(x^3-3x^2\right)+\left(2x^2-6x\right)+\left(-15x+45\right)\)
\(=x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)\)
\(=\left(x^2+2x-15\right)\left(x-3\right)\)
\(=\left[\left(x^2-3x\right)+\left(5x-15\right)\right]\left(x-3\right)\)
\(=\left[x\left(x-3\right)+5\left(x-3\right)\right]\left(x-3\right)\)
\(=\left(x+5\right)\left(x-3\right)^2\)
bài 1 : \(a^2-b^2-4ab+4\)
\(=\left(a-b\right)\left(a+b\right)-4\left(ab-1\right)\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3.\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
~ Chúc bạn học tốt~
\(x\left(x+1\right)\left(x^2+x-5\right)-6\)
\(=\left(x^2+x\right)\left(x^2+x-5\right)-6\)
\(=\left(x^2+x^2\right)^2-5\left(x^2+x\right)-6\)
\(=\left(x^2+x\right)^2+\left(x^2+x\right)-6\left(x^2+x\right)-6\)
\(=\left(x^2+x\right)\left(x^2+x+1\right)-6\left(x^2+x+1\right)\)
\(=\left(x^2+x-6\right)\left(x^2+x+1\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
`#3107.101107`
`(4x - 1)^2 - 121`
`= (4x - 1)^2 - (11)^2`
`= (4x - 1 - 11)(4x - 1 + 11)`
`= (4x - 12)(4x + 10)`
`= 4(x - 3) * 2(2x + 5)`
`= 8(x - 3)(2x + 5)`
_____
`x^6 - y^6`
`= (x^3)^2 - (y^3)^2`
`= (x^3 - y^3)(x^3 + y^3)`
`= (x - y)(x^2 + xy + y^2)(x + y)(x^2 - xy + y^2)`
`= (x - y)(x + y)(x^2 + xy + y^2)`
____
Sử dụng các HĐT:
`@` `A^2 - B^2 = (A - B)(A + B)`
`@` `A^3 - B^3 = (A - B)(A^2 + AB + B^2)`
`@` `A^3 + B^3 = (A + B)(A^2 - AB + B^2).`
a: \(\left(4x-1\right)^2-121\)
\(=\left(4x-1\right)^2-11^2\)
\(=\left(4x-1-11\right)\left(4x-1+11\right)\)
\(=\left(4x-12\right)\left(4x+10\right)\)
\(=8\left(x-3\right)\left(2x+5\right)\)
b: \(x^6-y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(x^2\) - \(x\) - 121
= (\(x^2\) - \(2.x.\frac{1}{2}\) + \(\frac{1}{4}\) ) - \(\frac{1}{4}\) - 121
= (\(x\) - \(\frac{1}{2}\) )2 - \(\frac{485}{4}\)
= (\(x\) - \(\frac{1}{2}\) - \(\frac{\sqrt{485}}{2}\) ) (\(x\) - \(\frac{1}{2}\) + \(\frac{\sqrt{485}}{2}\) )
= (\(x\) - \(\frac{1+\sqrt{485}}{2}\) ) (\(x\) - \(\frac{1-\sqrt{485}}{2}\) )
\(x^2-x-121\)
\(=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}-121\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}\)
\(=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)\)
\(=\left(x-\frac{1+\sqrt{485}}{2}\right)\left(x-\frac{1-\sqrt{485}}{2}\right)\)