\(a^2+b^2\le2\)Chứng minh\(a+b\le2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Áp dụng bất đẳng thức Bunhiacopxki   ta có:

        \(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow\)\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\)\(\left(a+b\right)^2\le2.2=4\)   (do  \(a^2+b^2\le2\))

\(\Leftrightarrow\)\(a+b\le\sqrt{4}=2\)  (đpcm)

p/s: tham khảo ạ. mk ko giám đảm bảo

25 tháng 6 2015

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2-2ab\ge0\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow a^2+b^2+a^2+b^2\ge a^2+2ab+b^2\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow2.2\ge\left(a+b\right)^2\)

\(\Rightarrow-2\le a+b\le2\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)

\(\ge\left(a+b\right)\left[\left(a+b\right)^2-\frac{3\left(a+b\right)^2}{4}\right]=\frac{\left(a+b\right)^3}{4}\)

\(\Rightarrow2\ge\frac{\left(a+b\right)^3}{4}\Rightarrow a+b\le2\)

22 tháng 11 2017

Có : \(a^2+b^2\le2\) \(\left(1\right)\)

Áp dụng bất đẳng thức AM - GM ta được :

\(a^2+b^2\ge2ab\)

\(\Rightarrow2ab\le a^2+b^{2^{ }}\le2\) \(\left(2\right)\)

Cộng \(\left(1\right)\) \(\)\(\left(2\right)\) :

\(a^2+2ab+b^2\le4\)

\(\Rightarrow\left(a+b\right)^2\le4\)

\(\Rightarrow-2\le a+b\le2\)

15 tháng 10 2018

Ta có: để a2+b2+c2 bé hoặc bằng 5 thì a+b+c=3 và phải đạt giá trị lớn nhất

suy ra 1 số =2 1 số =1 1 số = 0

22+12+02=4+1+0=5

Vậy giá trị lớn nhất có thể đạt đc là 5 suy ra a2+b2+c2 bé hoặc bằng 5(đpcm)

15 tháng 10 2018

\(\left(a+b+c\right)^2=9\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=9\)

Có \(2\left(ab+bc+ac\right)\ge2.3\sqrt[3]{a^2b^2c^2}=6\sqrt[3]{a^2b^2c^2}\left(BĐTcosi\right)\)

Dấu "=" xảy ra khi a = b = c

\(a^2+b^2+c^2\le9-6\sqrt[3]{a^2b^2c^2}\le9-6=3\)

Vậy .......

26 tháng 3 2017

vì avà b2 là 2 SCP nên chúng là STN

thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1

=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)

23 tháng 9 2016

Giả sử tồn tại hai số a,b sao cho \(a^3+b^3=2\) và \(a+b>2\)

Khi đó, đặt \(a=x+y\) , \(b=x-y\) 

Ta có \(a+b=x+y+x-y=2x>2\Rightarrow x>1\)

\(a^3+b^3=\left(x+y\right)^3+\left(x-y\right)^3=2x^3+6xy^2\)

Do x > 1 nên \(2x^3>2;6xy^2\ge0\). Suy ra \(a^3+b^3>2\) , trái với giả thiết đề bài.

Vậy ta có đpcm