Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Mình không biết làm.
Bài 2:
TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)
=> (n+20102011) chia hết cho 2.
Nên (n+20102011)(n+2011) chia hết cho 2
TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)
=> n + 2011 chia hết cho 2
Nên (n+20102011)(n+2011) chia hết cho 2
Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N
a,
Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2
Khi chia một số cho 3 sẽ xảy ra 1 trong ba trường hợp sau:
a=3k hoạc a=3k+1 hoặc a=3k+2
* Nếu a=3k thì a sẽ chia hết cho 2. (1)
* Nếu a=3k+2 thì a+1=3k+2
a =3k+3
Vì 3k chia hết cho 3
3 chia hết cho 3
=> 3k+3 chia hết cho 3 hay a+1 chia hết cho 3 (2)
* Nếu a=3k+1 thì a+2=3k+1
a =3k+3
Vì 3k chia hết cho 3
3 chia hết cho 3
=> 3k+3 chia hết cho 3 hay a+2 chia hết cho 3 (3)
Từ (1),(2) và (3) =>trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
20102011 chẵn nên đặt là 2k
2011 lẻ nên đặt là 2q + 1
Ta có:
Đặt A = (n + 2k)(n + 2k + 1)
+ n lẻ => n + 2k + 1 chẵn => n + 2q + 1 chia hết cho 2 => A chia hết cho 2
+ n chẵn => n + 2k chẵn => n + 2k chia hết cho 2 => A chia hết cho 2
Vậy...
2011 mũ 2 . 2011 mũ x = 2011 mũ 7
2011 mũ 2 . 2011 mũ x = 2011 mũ 2+5
2011 mũ 2 . 2011 mũ x = 2011 mũ 2 . 2011 mũ 5
2011 mũ x = 2011 mũ 5
Suy ra x = 5
1. Với n = 2k
=> n (n + 5) = 2k (2k + 5) chia hết cho 2
Với n = 2k + 1
=> n (n + 5) = (2k +1)(2k + 6)
=> 2k + 6 chia hết cho 2.
Vậy: với mọi n thuộc N thì n(n+5) chia hết cho 2.
2. \(n^2+n+1=n\left(n+1\right)+1\)
Có: \(n\left(n+1\right)⋮2\)
=> \(n\left(n+1\right)+1⋮̸2\)
Vì n và n + 1 là 2 stn liên tiếp nên tận cùng của tích là 0,2,6.
=> n (n + 1) + 1 tận cùng là 1,3,7
=> n (n+1) +1 không chia hết cho 5.
a) Ta có :
A = 50 + 51 + 52 + ... + 52010 + 52011
=> 5A = 51 + 52 + 53 + ... + 52012
=> 5A - A = ( 51 + 52 + 53 + ... + 52012 ) - ( 50 + 51 + 52 + ... + 52010 + 52011 )
=> 4A = 22012 - 50 = 52012 - 1
=> 4A + 1 = ( 52012 - 1 ) + 1 = 52012 llalàlà 1 lũy thừa của 5
b) Phần a ta đã tính được 4A + 1 = 52012
Mà 4A + 1 = 5x
=> 5x = 52012
=> x = 2012
\(A=\left(n+2010^{2011}\right)\left(n+2011\right)\)
=> \(A=\left(n+2010-2010+2010^{2011}\right)\left(n+2011\right)\)
=> \(A=\left[\left(n+2010\right)-\left(2010-2010^{2011}\right)\right]\left(n+2011\right)\)
=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)\)
Vì n là số tự nhiên nên (n+2010) và (n+2011) là 2 số tự nhiên => (n+2010)(n+2011) chia hết cho 2
( vì tích 2 số tự nhiên liên tiếp luôn chia hết cho 2)
Mặt khác dễ thấy 2010-2010^11 có chữ số tận cùng là 0 nên chia hết cho 2
=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)⋮2\) ( Với mọi n \(\in\)N )