Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}\\ A=\left|x-1\right|+\left|x+1\right|\\ A=\left|1-x\right|+\left|x+1\right|\ge\left|1-x+x+1\right|=2\)
dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-x< 0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1\ge x\\x\ge-1\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}1< x\\x< -1\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
\(B=\sqrt{4x^2-12x+9}+\sqrt{4x^2+12x+9}\\ B=\left|2x-3\right|+\left|2x+3\right|\\ B=\left|3-2x\right|+\left|2x+3\right|\ge\left|3-2x+2x+3\right|=6\)
dấu " = " xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}3-2x\ge0\\2x+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3-2x< 0\\2x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3\ge2x\\2x\ge-3\end{matrix}\right.\\\left\{{}\begin{matrix}3< 2x\\2x< -3\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\dfrac{3}{2}\ge x\\x\ge-\dfrac{3}{2}\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}\dfrac{3}{2}< x\\x< -\dfrac{3}{2}\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
2)
\(A=\sqrt{x+4}+\sqrt{4-x}\\ A^2=x+4+4-x+2\sqrt{\left(x+4\right)\left(4-x\right)}\\ A^2=4+2\sqrt{16-x^2}\\ vìx^2\ge0nên\\ A^2\le12\\ A\le\sqrt{12}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le16\end{matrix}\right.\Rightarrow0\le x\le4\)
vậy...
\(B=\sqrt{x+6}+\sqrt{6-x}\\ B^2=x+6+6-x+2\sqrt{\left(x+6\right)\left(6-x\right)}\\ B^2=12+2\sqrt{36-x^2}\\ vì\: x^2\ge0nên\\ B^2\le24\\ B\le\sqrt{24}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le36\end{matrix}\right.\Rightarrow0\le x\le6\)
a/ \(\sqrt{4\left(x-1\right)^2}=6\)
\(\Leftrightarrow\left|2\left(x-1\right)\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2\left(x-1\right)=6\\2\left(x-1\right)=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
vậy.......
b/ \(\sqrt{x^2-4x+9}=3\)
\(\Leftrightarrow x^2-4x+9=9\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\Rightarrow x=4\end{matrix}\right.\)
Vậy.............
c/ đk: x ≤ 3 - √5
\(\sqrt{x^2-6x+4}=\sqrt{4-x}\)
\(\Leftrightarrow x^2-6x+4=4-x\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x-5=0\Rightarrow x=5\left(KTM\right)\end{matrix}\right.\)
vậy.......
a. \(\sqrt{4\left(x-1\right)^2}\) =6
Với x ≥1, bình phương 2 vế ta có:
=> 4(x-1)2 =36
=> 4(x2 -2x+1) = 36
=> 4x2 - 8x +4 =36
=> 4x2 -8x -32=0
=> 4x2 -16x + 8x -32=0
=> 4x(x-4) +8(x-4)=0
=> (x-4)(4x+8)=0
=> x=4(TM)
ĐKXĐ: \(-\frac{16}{3}\le x\le4\)
\(\Leftrightarrow3x^2-12x+36=12\sqrt{4-x}+3\sqrt{3x+16}\)
\(\Leftrightarrow3x^2-9x+4\left(6-x-3\sqrt{4-x}\right)+\left(x+12-3\sqrt{3x+16}\right)=0\)
\(\Leftrightarrow3\left(x^2-3x\right)+\frac{4\left(x^2-3x\right)}{6-x+3\sqrt{4-x}}+\frac{x^2-3x}{x+12+3\sqrt{3x+16}}=0\)
\(\Leftrightarrow\left(x^2-3x\right)\left(3+\frac{4}{6-x+3\sqrt{4-x}}+\frac{1}{x+12+3\sqrt{3x+16}}\right)=0\)
\(\Leftrightarrow x^2-3x=0\)