Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk sửa lại đề nhá : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
Ta có : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)
\(\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
Đặt t = \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
Khi đó \(t^2=\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
Suy ra : t = \(\frac{1}{2};-\frac{1}{2}\)
+ t = \(\frac{1}{2}\) thì x = \(\frac{1}{2}\).2 = 1
y = \(\frac{1}{2}\).4 = 2
z = \(\frac{1}{2}\).6 = 3
+ t = \(-\frac{1}{2}\) thì x = \(-\frac{1}{2}\). 2 = -1
y \(=-\frac{1}{2}.4=-2\)
z \(=-\frac{1}{2}.6=-3\)
Bài này có trong câu hỏi tương tự và đã được olm.vn bình chọn nhé
Mình chỉ làm lại cho bạn dễ coi thôi
Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)
Khi đó \(a=kx;b=yk;c=zk\)
Suy ra \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{xk.k^2+yk.k+zk}{x.k^2+yk+z}=\frac{xk^3+yk^2+zk}{xk^2+yk+z}=\frac{k.\left(xk^2+yk+z\right)}{xk^2+yk+z}=k\)
Do đó giá trị biểu thức không phụ thuộc vào k
Vậy..