Gọi A là tập hợp các số tự nhiên có 4 chữ số mà tổng các chữ số bằng 4. Hỏi tập hợp A có bao nhiêu phần tử và đó là những phần tử nào ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta có:
11...1 chia hết cho 81= 11...1 chia hết cho 9*9
- tổng các chữ số là: 1+1+1+1+1+1...+1= 81 chia hết cho 9 =9 chia hết cho 9
nên 111...1 chia hết cho 81.
bạn vào link này
nhưng vẫn tiick cho mình nha
https://pitago.vn/question/chung-minh-rang-a-so-gom-81-chu-so-1-chia-het-cho-81-b-4105.html
ok t ick nhá

Đặt 11...1(n chữ số 1)=a do đó 55...56(n chữ số 5)=55...5+1=5a+1 và 10^n=99...9+1=9a+1. Khi đó A = a.(9a+1)+5a+1=9a^2+6a+1=(3a+1)^2 là số cp

ta có
\(C=444..4000..0+888..8+1=4.10^n\left(1+10+..+10^{n-1}\right)+8.\left(1+10+..+10^{n-1}\right)+1\)
\(=4.10^n\frac{10^n-1}{9}+8\frac{10^n-1}{9}+1=\frac{4.10^{2n}+4.10^n+1}{9}=\left(\frac{2.10^n+1}{3}\right)^2\)
rõ ràng C là số tự nhiên nên \(\frac{2.10^n+1}{3}\) là số tự nhiên, vậy ta có đpcm

xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2

ta có :
\(ab>2016a+2017b\Rightarrow a\left(b-2016\right)>2017b\) hay ta có : \(a>\frac{2017b}{b-2016}\)
Vậy \(a+b>\frac{2017b}{b-2016}+b=b+2017+\frac{2016\times2017}{b-2106}=b-2016+\frac{2016\times2017}{b-2106}+2016+2017\)
\(\ge2\sqrt{2016\times2017}+2016+2017=\left(\sqrt{2016}+\sqrt{2017}\right)^2\)
Vậy ta có đpcm

tìm số tự nhiên nhỏ nhất biết rằng khi chia số đó cho 5,6,7,8 được số dư lần lượt là 1,2,3,4 gọi a là số cần tìm ta có
a+1 là số nhỏ nhất chia hết cho 5,6,7,8
số nhỏ nhất chia hết cho 5,6,7,8 là bội chung nhỏ nhất của số đó
chính là số
6^2.2^6.6.8
=36.64.48
=110592
=> số cần tìm là 1105292
Gọi số cần tìm là a thì a+4 chia hết cho 5,6,7,8
suy ra a+4 \(\varepsilon\)BC(5,6,7,8) mà a nhỏ nhất nên a+4=BCNN(5,6,7,8)

x là một số nào đó trong dãy số tuwh nhiên và y cũng như vậy
bạn ghi câu trên vào vở đi mình không nói dối đâu thật đó mình học rồi nên mình biết
.Vậy tập hợp A có 19 phần tử và các phần tử đó là 4000, 3100, 3010, 3001, 1300, 1030, 1003, 2200, 2020, 2002, 2110, 2101, 2011, 1201, 1210, 1120, 1102, 1021, 1012. Xin lỗi nha, câu trả lời kia mình ghi phần này rồi nhưng không hiểu sao ko hiển thị
Ta có thể biểu diễn tổng 4 dưới dạng các dãy số hạng sau:
\(4\)
\(3+1\)
\(2+2\)
\(2+1+1\)
\(1+1+1+1\)
Từ dãy số hạng \(4\) có thể tìm ra được số \(4000\) thỏa mãn yêu cầu đề bài.
Từ dãy số hạng \(3+1\) có thể tìm ra được các số \(3100,3010,3001,1300,1030,1003\) thỏa mãn yêu cầu đề bài.
Từ dãy số hạng \(2+2\) có thể tìm ra được các số \(2200,2020,2002\) thỏa mãn yêu cầu đề bài.
Từ dãy số hạng \(2+1+1\) có thể tìm ra được các số \(2110,2101,2011,1201,1210,1120,1102,1021,1012\) thỏa mãn yêu cầu đề bài.