Giải hệ Phương trình {7x3+11=3(x+y)(x+y+1)xy(3x+y)=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\hept{\begin{cases}\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\\\frac{z}{x+y+z+t}< \frac{z}{x+z+t}< \frac{z+y}{x+y+z+t}\\\frac{t}{x+y+z+t}< \frac{t}{x+y+t}< \frac{t+z}{x+y+z+t}\end{cases}}\)
Cộng lại ta có : \(1< M< 2\) Vậy M không phải số tự nhiên
x,y,z,t thuộc N khác 0 nên x,y,z,t thuộc N sao
=> x/x+y+z > 0
=> x/x+y+z > x/x+y+z+t
Tương tự : y/x+y+t > y/x+y+z+t
z/y+z+t > z/x+y+z+t
t/x+z+t > t/x+y+z+t
=> M > x+y+z+t/x+y+z+t = 1
Lại có : x < x+y+z => x/x+y+z < 1 => 0 < x/x+y+z < 1
=> x/x+y+z < x+t/x+y+z+t
Tương tự : y/x+y+t < y+z/x+y+z+t
z/y+z+t < z+x/x+y+z+t
t/x+z+t < t+y/x+y+z+t
=> M < 2x+2y+2z+2t/x+y+z+t = 2
Vậy 1 < M < 2
=> M ko phải là số tự nhiên
Tk mk nha

ta có , theo định lí viet nên : \(\hept{\begin{cases}x_1+x_2=-m\\x_1x_2=\frac{m^2-2}{2}\end{cases}\Rightarrow}x_1x_2=\frac{\left(x_1+x_2\right)^2-2}{2}\Leftrightarrow x_1^2+x_2^2=2\)
.ta có
\(A=2x_1x_2+\frac{3}{x_1^2+x_2^2+2x_1x_2+2}=2x_1x_2+\frac{3}{2x_1x_2+4}\)
Mà \(2=x_1^2+x_2^2\ge2\left|x_1x_2\right|\Rightarrow-1\le x_1x_2\le1\)
trên đọna [-1,1] hàm trên đồng biến nên : \(min=-2+\frac{3}{-2+4}=-\frac{1}{2}\)
\(m=2+\frac{3}{2+4}=\frac{5}{2}\)

Sau khi bán thì chênh lệch giữa cam và quýt là:
145-15+5=135 (kg)
Số phần mà 135 kg tương ứng là:
8-3=5 (phần)
Số kg cam cửa hàng có ban đầu là:
( 135:3x8)+15=375 (kg)
Số kg quýt của hàng có ban đầu là:
375-145=230 (kg)
Đáp số: Cam 375 kg
Quýt 230 kg
ai k mk mk k lại
Sau khi bán thì chênh lệch giữa cam và quýt là :
145 - 15 + 5 = 135 (kg)
Số phần mà 135 kg tương ứng là :
8 - 5 = 3 (phần)
Số kg cam cửa hàng có ban đầu là :
( 135 : 3 x 8 ) + 15 = 375 (kg)
Số Kg quýt cửa hàng có ban đầu là :
375 - 145 = 230 (kg)
Đáp Số :...

Có Vchóp = 1/3 Sđáy.h = 1/3.a2.2a =2/3a3
Có V. SAMN=V.SABD . 1/4=1/8V.SABCD=>.V.ABCDMN=7/8V.SABCD
=> V.ABCDMN = 7/8.2/3a3 = 7/12a3

Chắc để là tìm max
\(A=\sqrt{xy+3yz+2z^2}+\sqrt{yz+3xz+2x^2}+\sqrt{xz+3xy+2y^2}\)
Với x,y > 0 ta luôn có \(\sqrt{ab}\le\frac{a+b}{2}\)
Dấu "=" xảy ra khi a = b
Áp dụng ta được:
\(2\sqrt{\frac{3}{2}}\sqrt{xy+3yz+2z^2}\le\frac{3}{2}+xy+3yz+2z^2\)
Tương tự: \(2\sqrt{\frac{3}{2}}\sqrt{yz+3xz+2x^2}\le\frac{3}{2}+yz+3xz+2x^2\)
\(2\sqrt{\frac{3}{2}}\sqrt{xz+3xy+2y^2}\le\frac{3}{2}+xz+3xy+2y^2\)
Cộng theo vế ta được :
\(2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+4xy+4yz+4xz+2x^2+2y^2+2z^2\)
Ngoài ra với mọi số thực x,y,z ta có :
\(x^2+y^2+z^2\ge xy+yz+xz\)
Dấu "=" xảy ra khi x = y = z
\(\Rightarrow2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+6\left(x^2+y^2+z^2\right)\le\frac{9}{2}+6\times\frac{3}{4}=9\)
\(\Rightarrow A\le\frac{3\sqrt{6}}{2}\).
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

\(7x^3+11=3\left(x+y\right)\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y\right)^3+7x^3+11+1=\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3+7x^3+3xy\left(3x+y\right)=\left(x+y\right)^3+3\left(x+y\right)^2+3\left(x+y\right)+1\)
\(\Leftrightarrow8x^3+12x^2y+6xy^2+y^3=\left(x+y+1\right)^3\)
\(\Leftrightarrow\left(2x+y\right)^3=\left(x+y+1\right)^3\)
\(\Leftrightarrow2x+y=x+y+1\)
\(\Leftrightarrow x=1\)
Với \(x=1\):
\(y\left(3+y\right)=4\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-4\end{cases}}\).
y = 1
y = -4