5, 72 + 7, 22 + 8, 72 + 10, 22 + ...+ 32, 72 + 34, 22 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta có: A+B+C=1800(tổng 3 góc tam giác) mà C=900(vuông ở C ) suy ra A+B=900 mà B=2A suy ra A+2A=900 suy ra A=300 suy ra B =600
a, vì DCA kề bù với C suy ra DCA +C=1800 mà C=900suy ra DCA=900 suy ra DCA=C
xét tam giác ADC và ACB: DCA=C, CD=CB, AC cạnh chung suy ra tam giác ADC = ACB suy ra DAC=CAB và AD=AB
b, xét tam giác AMC, ANC: DAC=CAB, AC cạnh chung, AM=AN suy ra tam giác AMC=ANC suy ra MC=CN
c,xét tam giác MAC,NAC: DAC=CAB, AI cạnh chung , AM=AN suy ra tam giác MAC=NAC suy ra AIM=AIN và IM=IN
d, vì AIM kề bù IAN suy ra AIM+IAN=1800 mà AIM=AIN suy ra AIN+AIN=1800 suy ra AIN=900
vì AIN=900 và C=900 suy ra MN //BD


3/4 tổ một bằng 1/2 tổ hai => Ta có sơ đồ sau:
8 người Tổ 1 Tổ 2
Nhìn vào sơ đồ ta thấy: Tổ 1 gồm 4 phần bằng nhau. Tổ 2 gồm 6 phần bằng nhau.
=> Hiệu số phần của tổ 2 và tổ 1 là: 6 - 4 = 2 (phần)
2 phần ứng với 8 người => Giá trị 1 phần là: 8 : 2 = 4 (người)
=> Tổ 1 có: 4 x 4 = 16 người
Tổ 2 có: 6 x 4 = 24 người
Cả hai tổ có: 16 + 24 = 40 người.
Có tất cả 40 công nhân !
100% đúng ! Yik đúng cho mk nha ! kb ko !

Đặt \(d=\left(a+b+2,2a+b+1\right)\).
\(\Rightarrow a^2=\left(a+b+2\right)\left(2a+b+1\right)⋮d^2\)
\(\Rightarrow a⋮d\).
\(\left(2a+b+1\right)-\left(a+b+2\right)=a-1⋮d\Rightarrow1⋮d\).
Do đó \(d=1\).
Suy ra \(a+b+2,2a+b+1\)đồng thời là các số chính phương.

\(A=\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}\)
\(\Rightarrow2A=1-\frac{2}{2}+\frac{3}{2^2}-\frac{4}{2^3}+\frac{5}{2^4}-\frac{6}{2^5}+\frac{7}{2^6}-...+\frac{99}{2^{98}}-\frac{100}{2^{99}}\)
Cộng vế theo vế ta được: \(3A=1+\left(\frac{1}{2}-\frac{2}{2}\right)+\left(-\frac{2}{2^2}+\frac{3}{2^2}\right)+\left(\frac{3}{2^3}-\frac{4}{2^3}\right)+\left(-\frac{4}{2^4}+\frac{5}{2^4}\right)+...+\left(\frac{99}{2^{99}}-\frac{100}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(\Rightarrow3A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Xét \(B=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(\Rightarrow2B=2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{97}}-\frac{1}{2^{98}}\)
Cộng vế theo vế ta được: \(3B=2+\left(1-1\right)+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)
\(\Rightarrow3B=2-\frac{1}{2^{99}}< 2\Rightarrow B< \frac{2}{3}\)
Mà \(3A=B-\frac{100}{2^{100}}\Rightarrow3A< B< \frac{2}{3}\Rightarrow A< \frac{2}{9}\)
27,89 nha
27,89
-HT-