Cho hs y = (m+5)x + 2m -10
Tìm giá trị m để:
a) Hàm số đồng biến
b) Đồ thị hàm số đ qua điểm A(2;3)
c) Đồ thị hàm số cắt trục trung tại điểm có tung độ là 9
d) Khoảng cách từ O đến đồ thị hàm số lớn nhất
e) C/m đồ thị hàm số luôn đi qua điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a, \(A=\left(\frac{1}{\sqrt{a}-1}+\frac{1}{\sqrt{a}+1}\right).\frac{1}{\sqrt{a}}\)
\(=\left(\frac{\sqrt{a}+1}{a-1}+\frac{\sqrt{a}-1}{a-1}\right).\frac{1}{\sqrt{a}}=\frac{2\sqrt{a}}{a-1}.\frac{1}{\sqrt{a}}=\frac{2}{a-1}\)
b, Ta có :A = 1 hay \(\frac{2}{a-1}=1\Leftrightarrow a-1=2\Leftrightarrow a=3\)( tmđkxđ )
Câu 3 :
\(\hept{\begin{cases}2x-3y=1\left(1\right)\\3x+y=7\left(2\right)\end{cases}}\)Ta có : \(y=7-3x\)(k)
Thay vào phương trình 1 ta được :
\(2x-3\left(7-3x\right)=1\)
\(\Leftrightarrow2x-21+9x=1\Leftrightarrow11x=22\Leftrightarrow x=2\)
Thay vào (k) ta được : \(y=7-3.2=7-6=1\)
Vậy \(\left\{x;y\right\}=\left\{2;1\right\}\)
b) Chắc đề bài bạn gõ sai, phải là \(AM.BN=\frac{AB^2}{4}\).
Gọi giao giữa tiếp tuyến \(MN\)và \(\left(O\right)\)là \(H\).
Tam giác \(MON\)vuông tại \(O\), đường cao \(OH\)nên có:
\(MH.NH=OH^2\)
mà \(MA=MH,NB=NH\)(tính chất 2 tiếp tuyến giao nhau) , \(AB=2R\)suy ra
\(AM.BN=MH.NH=OH^2=R^2=\frac{AB^2}{4}\)