Cho tam giác ABC đều, M nằm trong tam giác sao cho AM2=BM2+CM2. Tính số đo góc BMC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a,\)Ta có: \(\hept{\begin{cases}MA=MB\\OA=OB=R\end{cases}}\)
\(\Rightarrow MO\)là đường trung trực của \(AB\)
\(\Rightarrow MO\perp AB\)tại trung điểm \(K\)của \(AB\)
\(b,\)Áp dụng hệ thức lượng vào tam giác vuông \(MAO\)có:
\(+\)\(^{^{ }OA^2+AM^2=OM^2\Leftrightarrow AM=\sqrt{OM^2-OA^2}\Leftrightarrow AM=\sqrt{\frac{8}{5}R)^2-R^2}\Leftrightarrow AM=\frac{\sqrt{39}R}{5}}\)
\(+\) \(AK.OM=OA.AM\Leftrightarrow AK.\frac{8}{5}R\)\(=R.\frac{\sqrt{39}}{5}R\Rightarrow AB=2AK=R\frac{\sqrt{39}}{4}\)
\(+\) \(OA^2=OK.ON\Leftrightarrow OK=\frac{OA^2}{ON}=\frac{R^2}{\frac{8R}{5}}\)\(=\frac{5R}{8}\)
\(c,\)Ta có: \(\widehat{ABN}=90\)(B thuộc đường tròn đường kính AN) \(\Rightarrow BN//MO\left(\perp AB\right)\)
Do đó; \(\hept{\begin{cases}\widehat{AOM=\widehat{ANB}}\\\widehat{AOM=\widehat{BOM}}\end{cases}}\)
\(\Rightarrow\widehat{BOM=\widehat{ANB}}\)
Xét tam giác BHA và MBO có:
\(\hept{\begin{cases}\widehat{BHN}=\widehat{MBO}=90\\\widehat{BNH}=\widehat{BOM}\end{cases}}\)\(\Rightarrow\Delta BHN\simeq\Delta MBO\)\(\Rightarrow\hept{\begin{cases}BH=BN\\MB=MO\end{cases}}\)\(\Rightarrow BH.MO=BN.MB\left(đpcm\right)\)

\(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=\frac{a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\)
\(=\frac{a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}{\sqrt{a}+\sqrt{b}}=\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left[\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2\right]}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2\left(dpcm\right)\)

A B C M D
Trên nửa mặt phẳng bờ AB không chứa C dựng tam giác đều AMD ta có
\(\widehat{DAM}=\widehat{DAB}+\widehat{BAM}=60^o\Rightarrow\widehat{DAB}=60^o-\widehat{BAM}\)
\(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}=60^o\Rightarrow\widehat{CAM}=60^o-\widehat{BAM}\)
\(\Rightarrow\widehat{DAB}=\widehat{CAM}\)
Xét tg BAD và tg CAM có
\(\widehat{DAB}=\widehat{CAM}\left(cmt\right)\)
\(AD=AM\) (cạnh của tg đều ADM) (1)
\(AB=AC\) (cạnh của tg đều ABC)
\(\Rightarrow\Delta BAD=\Delta CAM\left(c.g.c\right)\Rightarrow CM=BD\)(1)
Theo đề bài ta có \(AM^2=BM^2+CM^2\) mà \(AM=DM\) (cạnh của tg đều ADM) (2)
Thay các kết quả (1) và (2) vào biểu thức
\(\Rightarrow DM^2=BM^2+BD^2\) => Tg BDM vuông tại B (theo định lý pitago đảo) \(\Rightarrow\widehat{DBM}=90^o\)
Ta có \(\Delta BAD=\Delta CAM\left(cmt\right)\Rightarrow\widehat{ABD}=\widehat{ACM}\)
\(\widehat{MCB}=60^o-\widehat{ACM}\)
\(\widehat{MBC}=60^o-\widehat{ABM}\)
\(\Rightarrow\widehat{MBC}=180^o-\widehat{MCB}-\widehat{MBC}=180^o-60^o+\widehat{ACM}-60^o+\widehat{ABM}\)
\(\Rightarrow\widehat{MBC}=60+\widehat{ACM}+\widehat{ABM}\) mà \(\widehat{ACM}=\widehat{ABD}\left(cmt\right)\)
\(\Rightarrow\widehat{MBC}=60^o+\widehat{ABD}+\widehat{ABM}=60^o+\widehat{DBM}=60^o+90^o=150^o\)