Tìm tất cả só số tự nhiên \(\overline{abc}\)có 3 chữ số sao cho: \(\hept{\begin{cases}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{cases}}\)với n là số nguyên lớn hơn 2
CÁC BẠN ƠI GIÚP MÌNH BÀI TOÁN NÀY VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}\)\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\)
\(A=\sqrt{n}-\sqrt{1}\)
\(B=\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)
\(B=-\left(\sqrt{1}+\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-...-\sqrt{24}+\sqrt{25}\)
\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)
\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)
\(B=-6-2\sqrt{2}-2\sqrt{3}-...-2\sqrt{24}\)
ta có \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}=\frac{\sqrt{1}-\sqrt{2}}{1-2}=\sqrt{1}-\sqrt{2}\)
mấy cái kia cũng thế a
\(=>A=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-2\right)+...+\left(\sqrt{n}-\sqrt{n-1}\right)\)=>A= căn n -1
Ta có :
\(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}\)
\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\)
\(=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
Vậy : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-1\right)+2\left(\sqrt{3}-\sqrt{2}\right)+....+2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=2\left(\sqrt{n+1}-1\right)\left(đpcm\right)\)
0,3mol chứ nhỉ?
a. \(2Al+6HCl\rightarrow2AlCl_3+3H_2\uparrow\left(1\right)\)
\(FeO+2HCl\rightarrow FeCl_2+H_2O\left(2\right)\)
\(Fe_2O_3+6HCl\rightarrow2FeCl_3+3H_2O\left(3\right)\)
b. Theo phương trình \(n_{Al}=\frac{2}{3}n_{H_2}=0,2mol\) và \(n_{HCl\left(1\right)}=0,6mol\)
\(\rightarrow m_{FeO}+m_{Fe_2O_3}=35,8-0,2.27=30,4g\)
Đặt \(\hept{\begin{cases}n_{FeO}=x\\n_{Fe_2O_3}=y\end{cases}}\)
\(\rightarrow72x+160y=30,4\left(1\right)\)
Theo phương trình \(2x+6y=n_{HCl\left(2+3\right)}=1,6.1-0,6=1\left(2\right)\)
Từ (1) và (2) suy ra x = 0,2 và y = 0,1
\(\rightarrow m_{FeO}=0,2.72=14,4g\) và \(m_{Fe_2O_3}=0,1.160=16g\)
\(\rightarrow\%m_{FeO}=\frac{14,4}{35,8}.100\%\approx40,22\%\)
\(\rightarrow\%m_{Fe_2O_3}=\frac{16}{35,8}.100\%\approx44,69\%\)
c. Theo phương trình \(n_{AlCl_3}=0,2mol\) và \(n_{FeCl_2}=0,2mol\) và \(n_{FeCl_3}=0,2mol\)
\(\rightarrow m_{\text{muối}}=0,2.133,5+0,2.127+0,2.162,5=84,6g\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(=\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right)\div\frac{1}{2\left(\sqrt{x}-2\right)}\)
\(=\left(\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right)\times\frac{2\left(\sqrt{x}-2\right)}{1}\)
\(=\left(\frac{x-4-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right)\times\frac{2\left(\sqrt{x}-2\right)}{1}\)
\(=\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\times\frac{2\left(\sqrt{x}-2\right)}{1}\)
\(=\frac{5\times2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{10}{\sqrt{x}-3}\)
\(\left(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\right):\frac{1}{2\sqrt{x}-4}\)
\(=\left(\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right):\frac{1}{2\sqrt{x}-4}\)
\(=\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\frac{2\left(\sqrt{x}-2\right)}{1}\)
\(=\frac{10\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{10}{\sqrt{x}-3}\)
Ta luôn có \(4\left(x^3+y^3\right)\ge\left(x+y\right)^3\)(*)
Thật vậy: (*)\(\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\)*Đúng với mọi x, y thực dương*
\(\Rightarrow\sqrt[3]{4\left(x^3+y^3\right)}\ge x+y\)
Tương tự, ta có: \(\sqrt[3]{4\left(y^3+z^3\right)}\ge y+z,\sqrt[3]{4\left(z^3+x^3\right)}\ge z+x\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt[3]{4\left(x^3+y^3\right)}+\sqrt[3]{4\left(y^3+z^3\right)}+\sqrt[3]{4\left(z^3+x^3\right)}\ge2\left(x+y+z\right)\)
Ta cần chứng minh \(\left(x+y+z\right)+\left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right)\ge6\)
Thật vậy, ta có: \(\left(x+y+z\right)+\left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right)\ge3\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge3.2=6\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z
Áp dụng bđt: 2xy \(\le\)(x + y)2/2
khi đó, ta có: \(\sqrt{\frac{a+b}{2ab}}\ge\sqrt{\frac{a+b}{\frac{\left(a+b\right)^2}{2}}}=\sqrt{\frac{2}{a+b}}=\frac{1}{\sqrt{\frac{a+b}{2}}}\ge\frac{1}{\frac{\frac{a+b}{2}+1}{2}}=\frac{4}{a+b+2}\)
CMTT: \(\sqrt{\frac{b+c}{2bc}}\ge\frac{4}{b+c+2}\)
\(\sqrt{\frac{c+a}{2ca}}\ge\frac{4}{c+a+2}\)
=>Đặt A = \(\sqrt{\frac{a+b}{2ab}}+\sqrt{\frac{b+c}{2bc}}+\sqrt{\frac{a+c}{2ac}}\ge\frac{4}{a+b+2}+\frac{4}{b+c+2}+\frac{4}{a+c+2}\)
Áp dụng bđt svacso : \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)
ta có:
\(A\ge\frac{\left(2+2+2\right)^2}{a+b+2+b+c+2+a+c+2}=\frac{36}{2\left(a+b+c\right)+6}=\frac{36}{12}=3\)
=> Đpcm
Ta có: \(\Sigma_{cyc}\frac{a+1}{1+b^2}=\Sigma_{cyc}\left(\frac{a}{1+b^2}+\frac{1}{1+b^2}\right)=\Sigma_{cyc}\left(a-\frac{ab^2}{1+b^2}\right)+\Sigma_{cyc}\left(1-\frac{b^2}{1+b^2}\right)\)\(\ge\Sigma_{cyc}\left(a-\frac{ab^2}{2b}\right)+\Sigma_{cyc}\left(1-\frac{b^2}{2b}\right)=\left(3-\frac{ab+bc+ca}{2}\right)+\left(3-\frac{a+b+c}{2}\right)\)\(\ge\left(3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}\right)+\frac{3}{2}=3\)
Đẳng thức xảy ra khi a = b = c = 1
lấy phương trình trên trừ đi phương trình dưới ta có
\(\overline{abc}-\overline{cba}=n^2-1-\left(n-2\right)^2=4n-5\)
\(\Leftrightarrow99a-99c=4n-5=4\left(n-26\right)+99\)
rõ ràng a,c phải khác 0 thì abc và cba mới là số tự nhiên
do vế trái chia hết cho 99 nên vế phải cũng phải chia hết cho 99 , do đó tồn tại số tự nhiên k sao cho
\(\Rightarrow n-26=99k\)\(\Rightarrow99\left(a-c\right)=99\left(4k+1\right)\)
mà a và c là hai chữ số khác không nên hiệu a-c nằm trong tập {-8,8}
\(\Rightarrow k\in\left\{-2;-1;0;1\right\}\)từ đó ta tìm được \(n\in\left\{-172;-73;26;125\right\}\)
mà n là số tự nhiên lớn hơn 2 vậy nên \(\orbr{\begin{cases}n=26\\n=125\end{cases}}\Rightarrow\orbr{\begin{cases}\overline{abc}=26^2-1=675\\\overline{abc}=125^2-1=15624\end{cases}}\)
do abc là số có 3 chứ số nên chỉ có 675 lầ thỏa mãn đề
\(\hept{\begin{cases}\overline{abc}=100a+10b+c=n^2-1\left(1\right)\\\overline{cba}=100c+10b+a=n^2-4n+4\left(2\right)\end{cases}}\)
từ 1 zà 2 \(=>99\left(a-c\right)=4n-5=>4n-5⋮99\)
Mặt khác \(100\le n^2-1\le999\Leftrightarrow101\le n^2\le1000=>11\le n\le31\Leftrightarrow39\le4n-5\le119\)
từ 3 zà 4 => 4n-5=99 => n=26
zậy số cần tim là abc=675