Cho a, b, c > 0. CM: \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a+b+c}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\Leftrightarrow x^2-1+2\sqrt{x}.\sqrt{x^2-1}-3x=0\)
đặt \(\sqrt{x^2-1}=a;\sqrt{x}=b\)
=>a2+2ab-3b2=0
đến đây dễ rồi
Điều kiện -1 =<x<0
Chia cả 2 vế cho x ta nhận được \(x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}\)
Đặt t=\(x-\frac{1}{x}\)ta giải được

b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)
\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)
\(\Leftrightarrow\sqrt{x+1}.-13=0\)
\(\Leftrightarrow x=-1\)

- Nếu có 2 dấu căn: \(K=\sqrt{5+\sqrt{13}}\approx2,9335\) có 1 chữ số 9 đầu tiên ở phần thập phân (1)
- Nếu có 3 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5}}}\approx2,9838\)(1)
- Nếu có 4 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13}}}}\approx2,9986\) (2)
- Nếu có 5 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5}}}}}\approx2,99966\)(3)
- Nếu có 6 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13}}}}}}\approx2,999971\)(4)
...
Vậy nếu có n (n là số tự nhiên lớn hơn 2) dấu căn thì \(K\approx2,99...9\)(n - 2 chữ số 9).
ĐK x> \(\sqrt{5+\sqrt{13}}\)
bình phương 2 vế ta được \(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+....}}}\)
bình phương 2 vế ta được \(x^4=25+13+\sqrt{5+\sqrt{13+...}}+10\sqrt{13+\sqrt{5+\sqrt{13...}}}\)
đặt x=\(\sqrt{5+\sqrt{13+...}}\)
=> \(x^4=25+13+x+10\sqrt{13+x}\)
=> \(x^4=38+x+10\sqrt{13+x}\)
giai pt => x=3 (nhận)
vậy K=3

Áp dụng BĐT AM - GM, ta có: \(a\sqrt{b-1}+b\sqrt{a-1}=a\sqrt{\left(b-1\right).1}+b.\sqrt{\left(a-1\right).1}\le a.\frac{b}{2}+b.\frac{a}{2}=ab\)
Đẳng thức xảy ra khi a = b = 2
bạn ơi có nhầm lẫn j ko bạn
đề là C/M a\(\sqrt{b+1}\)+ b\(\sqrt{a-1}\)<= ab mà
sao bạn làm là a\(\sqrt{b-1}\)+ b\(\sqrt{a-1}\)

Vì 105 là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|}+x^2+x+y\) phải là các số lẻ.
Từ \(2x+5y+1\) là số lẻ mà \(2x+1\) là số lẻ nên 5y là số chẵn suy ra y là số chẵn.
\(2^{\left|x\right|}+x^2+x+y\) là số lẻ mà \(x^2+x=x\left(x+1\right)\) là tích của hai số nguyên liên tiếp nên là số chẵn, y cũng là số chẵn nên \(2^{\left|x\right|}\) là số lẻ. Điều này chỉ xảy ra khi \(x=0\)
Thay x=0 vào phương trình đã cho, ta được:
\(\left(5y+1\right)\left(y+1\right)=105\)
\(\Leftrightarrow5y^2+6y-104=0\)
\(\Leftrightarrow5y^2-20y+26y-104=0\)
\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)
\(\Leftrightarrow\left(5y+26\right)\left(y-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=-\frac{26}{5}\left(\text{loại}\right)\\y=4\left(TM\right)\end{cases}}\)
Vậy phương trình có nghiệm nguyên \(\left(x;y\right)=\left(0;4\right)\)
Chứng minh rằng không tồn tại số nguyên n thỏa mãn $2014^{2014}+1\vdots n^{3}+2012n$ - Số học - Diễn đàn Toán học

Ta có:
\(\frac{1}{2x+y+z}=\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(1\right)\)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\left(3\right)\end{cases}}\)
Từ (1), (2), (3) ta có:
\(\Rightarrow M\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{16}.4.4=1\)
Để đơn giản bài toán thì ta xét trường hợp cá biệt. \(x=y\) thì đề ban đầu trở thành.
\(x,z>0,\frac{2}{x}+\frac{1}{z}=4\)
Đễ thấy \(\frac{1}{z}< 4\)
\(\Leftrightarrow z>0,25\)
Với \(z\) càng gần bằng 0,25 thì \(\frac{1}{z}\)càng gần với 4
\(\Rightarrow\frac{2}{x}=4-\frac{1}{z}\) càng gần = 0
\(\Rightarrow x\)càng lớn
\(\Rightarrow M\) càng bé nhưng giá trị chỉ dần về 0 chứ không thể bằng 0 được.
Vậy đề trên là sai.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{ca^2}{c^2+a^2}\)
\(\ge a-\frac{ab^2}{2ab}+b-\frac{bc^2}{2bc}+c-\frac{ca^2}{2ca}=a-\frac{b}{2}+b-\frac{c}{2}+c-\frac{a}{2}=\frac{a+b+c}{2}\)
Ê, thế bài 3 BVN làm thế nào