Cho a, b, c dương. Tìm giá trị nhỏ nhất của
\(A=\frac{4a}{a+b+2c}+\frac{b+3c}{2a+b+c}-\frac{8c}{a+b+3c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-x^2+x+2}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-\left(x-2\right)\left(x+1\right)}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow\frac{x^3+x^2+x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow x^3+x^2+x=\left(3-x\right)\left(x+1\right)\sqrt{x+1}\sqrt{2-x}\)
Áp dụng bđt AM-GM ta có
\(x^2-xy+y^2\ge x^2+y^2-\frac{x^2+y^2}{2}=\frac{x^2+y^2}{2}\)
\(\Rightarrow\frac{x+y}{x^2-xy+y^2}\le\frac{2\left(x+y\right)}{x^2+y^2}\le\frac{2\sqrt{2\left(x^2+y^2\right)}}{x^2+y^2}=\frac{2\sqrt{2}}{\sqrt{x^2+y^2}}\)
Dấu "=" xảy ra khi x=y=1
Chứng minh bằng phản chứng.
Giả sử c không phải cạnh nhỏ nhất, hay c lớn hơn hoặc bằng ít nhất một trong hai cạnh còn lại.
Giả sử cạnh đó là b. Ta có: \(b\le c\)
\(\Rightarrow a^2\ge5c^2-b^2\ge5c^2-c^2=4c^2\)
\(\Rightarrow a\ge2c\)
\(\Rightarrow b+c\le c+c=2c\le a\)
\(b+c\le a\) là một điều trái với bất đẳng thức tam giác \(b+c>a\)
Vậy điều giả sử sai.
Hay c là độ dài cạnh bé nhất,
Đề quá xấu!
Đặt \(x=12\sqrt{2}-17\). Chứng minh \(A\ge x\). Tìm điểm rơi giúp em cái đã rồi em suy nghĩ tiếp chứ tình hình này là thua rồi:))
Cho a, b, c là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a+3c}{a+2b+c}+\frac{4b}{a+b+2c}-\frac{8c}{a+b+3c}\)