K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

Bài này cần chú ý: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3=\frac{\left(a-b\right)^2}{ab}+\frac{\left(a-c\right)\left(b-c\right)}{ac}\)

Và \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}=\frac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b+2c\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Thêm 3 vào 2 vế ta cần chứng minh:

\(\frac{2}{1-a}+\frac{2}{1-b}+\frac{2}{1-c}\le2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{2}\) (chia hai vế cho 2 và chú ý 1 =a + b + c)

\(\Leftrightarrow\frac{3}{2}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}\le\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b+2c\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{\left(a-b\right)^2}{ab}+\frac{\left(a-c\right)\left(b-c\right)}{ac}\)

\(\Leftrightarrow\left(a-b\right)^2\left(\frac{1}{ab}-\frac{1}{\left(a+c\right)\left(b+c\right)}\right)+\left(\frac{1}{ac}-\frac{a+b+2c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-c\right)\left(b-c\right)\ge0\)

Quy đồng mỗi cái ngoặc to phía sau là thấy nó > 0:D

Giả sử c = min{a,b,c} như vậy (a-c)(b-c)\(\ge0\) chúng ta có đpcm.

Is that true?

13 tháng 11 2019

WLOG \(b=mid\left\{a,b,c\right\}\). Áp dụng một bổ đề trong một bài giải của alibaba nguyễn trong câu hỏi của Neet ở học 24. Mọi người có thể tự chứng minh để nhớ lâu hoặc ai cần có thể hỏi ổng

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\) với a,b,c>0

Khi đó ta cần chứng minh \(2\left(\frac{a+b}{b+c}+\frac{b+c}{a+b}\right)+2\ge\frac{2a+b+c}{b+c}+\frac{2b+c+a}{c+a}+\frac{2c+a+b}{a+b}\)

\(\Leftrightarrow\frac{a+b}{b+c}+\frac{b+c}{a+b}-\frac{1}{2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Leftrightarrow\frac{b}{b+c}+\frac{b}{a+b}-\frac{1}{2}\ge\frac{b}{c+a}\)

\(\Leftrightarrow\frac{\left(a-b\right)\left(b-c\right)\left(a+c+2b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)*đúng với \(b=mid\left\{a,b,c\right\}\)*

13 tháng 11 2019

Cách giải giống câu này luôn.

Câu hỏi của Nguyễn Linh Chi - Toán lớp 9 - Học toán với OnlineMath

5 tháng 11 2018

ai giải giúp bạn này đi TT mik cũng muốn xem lời giải bài này 

2 tháng 12 2019

Câu 1: Đặt bt là A>0 ta có:

\(2A=3-\frac{a^2b}{2+a^2b}-\frac{b^2c}{2+b^2c}-\)\(\frac{c^2a}{2+c^2a}\)

Áp dụng bđt Cosi ta đc \(2A\ge3-\frac{1}{3}\left(\sqrt[3]{a^4b^2}+\sqrt[3]{b^4c^2}+\sqrt[3]{c^4a^2}\right)\)

\(\ge3-\frac{1}{3}\left(\frac{2ab+a^2}{3}+\frac{2bc+b^2}{3}+\frac{2ca+c^2}{3}\right)\)\(=3-\frac{1}{3}\left(\frac{\left(a+b+c\right)^2}{3}\right)=3-3\cdot\frac{1}{3}=2\)

\(\Rightarrow A\ge1\)

13 tháng 11 2019

bài này mình nhớ làm khá nhiều ở cả olm và học 24 rồi. Mà chắc nó ko hiện câu hỏi tương tự  nên làm lại 

\(\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\). Khi đó cần cm \(\frac{2a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{9}{4}\) với ab+bc+ca=1

\(VT=\)\(\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}}{2}=\frac{9}{4}\)

13 tháng 11 2019

Đổi ẩn là ra ah.

\(\left(x,y,z\right)=\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)\)

12 tháng 11 2019

ĐK để phuơng trình có 2 nghiệm: 

\(\Delta'\ge0\Leftrightarrow1^2-3+m\ge0\Leftrightarrow m\ge2\)(1)

Áp dụng định lí Viet ta có: \(x_1+x_2=2\)\(x_1.x_2=3-m\)

Vì \(x_2\) là nghiệm của pt nên: \(x^2_2-2x_2+3-m=0\)

<=> \(x^2_2-2x_2+4=m+1\)

Khi đó ta có: \(2\left(2-x_2\right)^3+\left(x_2^2-2x_2+4\right)x_2^2=16\)

<=> \(2\left(8-12x_2+6x_2^2-x_2^3\right)+\left(x_2^2-2x_2+4\right)x_2^2=16\)

<=> \(x_2\left(x_2^3-4x_2^2+16x_2-24\right)=0\)

<=> \(x_2\left(x_2-2\right)\left(x_2-2x_2+12\right)=0\)

<=> \(\orbr{\begin{cases}x_2=0\Rightarrow x_1=2\Rightarrow3-m=0\Rightarrow m=3\\x_2=2\Rightarrow x_1=0\Rightarrow3-m=0\Rightarrow m=3\end{cases}}\)( tm (1) )

Thử lại với m = 3 . Thỏa mãn.

Vậy:...

8 tháng 11 2019

Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd

\(S=ab^2+bc^2+ca^2-abc\)

WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)

\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)

Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)

WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương 

\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\) 

ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng 

8 tháng 11 2019

đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0) 

bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)

Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD 

23 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)

\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :

\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)

\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :

\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)

                                  \(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)

                                   \(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

Tương tự , chứng minh đc :

\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)

          \(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)

           \(\ge1\)

Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1