Có ba nhà triết gia Hy-Lạp cổ, sau một cuộc tranh luận căng thẳng và cũng vì trời hè nóng nực nên đã nằm ngủ dưới gốc cây trong vườn của Viện Hàn lâm. Có mấy thợ thông lò đi qua tinh nghịch đã bôi nhọ lên trán cả ba triết gia.
Khi ba nhà thông thái tỉnh dậy, họ nhìn nhau và cùng phá lên cười. Ai cũng yên chí rằng chỉ có hai người kia bị nhọ và họ cười nhau, còn mình thì cười họ. Thế nhưng, trong khoảnh khắc, một triết gia không cười nữa vì ông ta suy đoán ra trên trán ông ta cũng bị nhọ.
Vậy nhà thông thái đó suy luận như thế nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A B < > < > 5 3
Tại thời điểm lần gặp nhau thứ nhất thì cả hai xe đi được cả quãng đường AB.
Tại thời điểm lần gặp nhau thứ hai, cả hai xe đi được 3 lần quãng đường AB.
Tại thời điểm gặp nhau lần thứ nhất xe đi từ A đi được 5km => Tại lần gặp nhau thứ hai, mỗi xe đều đi gấp 3 lần quãng đường so với lần gặp nhau đầu => Tại lần gặp nhau thứ hai xe thứ nhất đi được 5 x 3 = 15 km.
Theo sơ đồ trên ta có: 15 = AB + 3 => AB = 15 - 3 = 12 (km)
Vậy quãng đường AB dài 12 km
ại thời điểm lần gặp nhau thứ nhất thì cả hai xe đi được cả quãng đường AB.
Tại thời điểm lần gặp nhau thứ hai, cả hai xe đi được 3 lần quãng đường AB.
Tại thời điểm gặp nhau lần thứ nhất xe đi từ A đi được 5km => Tại lần gặp nhau thứ hai, mỗi xe đều đi gấp 3 lần quãng đường so với lần gặp nhau đầu => Tại lần gặp nhau thứ
hai xe thứ nhất đi được 5 x 3 = 15 km.
Theo sơ đồ trên ta có: 15 = AB + 3 => AB = 15 - 3 = 12 (km)
Vậy quãng đường AB dài 12 km

A B C E F M N
Trên tia đối của BE lấy điểm M sao cho BM=AC
Trên tia đố của CF lấy điểm N sao cho CN=AB.
Ta có: ^ABE+^BAE=^ABE+^BAC=900 (vì tam giác AEB vuông tại E)
Tương tự: ^ACF+^CAF=^ACF+^BAC=900
=> ^ABE=^ACF => 1800 - ^ABE = 1800 - ^ACF => ^MBA=^ACN
Xét \(\Delta\)BMA và \(\Delta\)CAN:
BM=AC
^MBA=^ACN => \(\Delta\)BMA=\(\Delta\)CAN (c.g.c)
AB=CN
=> MA=AN (2 cạnh tương ứng)
Lại có: BE+AC=BA+CF (giả thiết). Thay AB=CN, AC=BM, ta được:
BE+BM=CN+CF => EM=FN
Xét \(\Delta\)AEM và \(\Delta\)AFN:
AM=AN (cmt)
^AEM=^AFN=900 => \(\Delta\)AEM=\(\Delta\)AFN (Cạnh huyền cạnh góc vuông)
EM=FN
=> ^AME=^ANF (2 góc tương ứng) hay ^AMB=^ANC (1)
Mà \(\Delta\)BMA=\(\Delta\)CAN (cmt) => ^AMB=^NAC (2)
Từ (1) và (2) => ^ANC=^NAC => \(\Delta\)ACN cân tại C => AC=CN.
Mà CN=AB => AB=AC => \(\Delta\)ABC cân tại A (đpcm).

Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)
Ta xét tổng của dãy trên:
\(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)
<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)
Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp
Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:
\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)
= \(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)
=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2
Mà một số chính phương khi chia 3 dư 0 hoac 1
Vậy tổng trên không thể là số chính phương

cau 2 cau hoi la |x-1/2|+|y+2/3|+|x^2+xz| nha, ko phai la 2\3 ma la 2/3

A C B D E M J X
Ta thấy \(\widehat{ABD}=\widehat{ABC}+\widehat{CBD}=90^o\)
\(\widehat{EBC}=\widehat{DBE}+\widehat{CBD}=90^o\)
\(\Rightarrow\widehat{ABC}=\widehat{DBE}\)
Xét tam giác ABC và tam giác DBE có :
AB = DB
BC = BE
\(\widehat{ABC}=\widehat{DBE}\)
\(\Rightarrow\Delta ABC=\Delta DBE\left(c-g-c\right)\)
\(\Rightarrow\widehat{BDE}=\widehat{BAC}=90^o\)
Gọi J là trung điểm BE.
Xét tam giác vuông BDE có DJ là trung tuyến ứng với cạnh huyền nên JB = JD = JE
Xét tam giác vuông cân BEC có M là trung điểm EC nên BM cũng là đường cao hay \(\widehat{BME}=90^o\)
Xét tam giác vuông BME có MJ là trung tuyến ứng với cạnh huyền nên JB = JE = JM.
Ta thấy ngay tam giác BME vuông cân tại M. Vậy nên \(\widehat{MJE}=90^o\)
Vẽ tia Jx là tia đối của tia JD.
Ta thấy \(\widehat{MDE}=\widehat{MDJ}-\widehat{EDJ}=\frac{\widehat{MJx}}{2}-\frac{\widehat{EJx}}{2}=\frac{\widehat{MJE}}{2}=45^o\)
Tam giác ABD vuông cân nên \(\widehat{BDA}=45^o\)
Vậy nên \(\widehat{ADM}=\widehat{ADB}+\widehat{BDE}+\widehat{EDM}=45^o+90^o+45^o=180^o\)
hay A, D, M thẳng hàng.

Tử số của 3 phân số tỉ lệ với 3 ;7 ; 11
=> gọi tử số của các phân số lần lượt là: 3k; 7k; 11k
Mẫu số của chúng tỉ lệ với 10; 20; 40 => cũng tỉ lệ với 1; 2; 4
=> Gọi mẫu số của chúng lần lượt là: h; 2h; 4h
=> 3 phân số đó là: \(\frac{3k}{h};\frac{7k}{2h};\frac{11k}{4h}\)
Tổng 3 phân số = \(\frac{3k}{h}+\frac{7k}{2h}+\frac{11k}{4h}=\left(3+\frac{7}{2}+\frac{11}{4}\right).\frac{k}{h}=\frac{37}{4}.\frac{k}{h}=\frac{37}{20}\)
=> \(\frac{k}{h}=\frac{37}{20}:\frac{37}{4}=\frac{1}{5}\)
Vậy 3 phân số đó là: \(\frac{3}{5};\frac{7}{10};\frac{11}{20}\)
Gọi tử của 3 phân số tối giản là a ; b ; c.
Theo đề bài ta có \(\frac{a}{3}=\frac{b}{7}=\frac{c}{11}\)
Gọi mẫu của ba phân số tối giản là x ; y ; z.
Theo đề bài lại có \(\frac{x}{10}=\frac{y}{20}=\frac{z}{40}\)
Áp dụng t/c tỉ lệ thức được \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
\(\Rightarrow\frac{a}{x}=\frac{3}{10};\frac{b}{y}=\frac{7}{20};\frac{c}{z}=\frac{11}{40}\) (vì 3 phân số tối giản).
Vậy 3 phân số cần tìm là \(\frac{3}{10};\frac{7}{20};\frac{11}{40}\)

Nhìn hình vẽ thì rõ ràng góc NPC là góc tù nhưng tại sao \(\widehat{NPC}=70^o\) ?

Xét \(a+b+c+d=0\) thì ta có dãy tỷ số là đúng.
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)
\(\Rightarrow M=-1-1-1-1=-4\)
Xét \(a+b+c+d\ne0\)thì ta có:
\(\frac{2015a+b+c+d}{a}=\frac{a+2015b+c+d}{b}=\frac{a+b+2015c+d}{c}=\frac{a+b+c+2015d}{d}=\frac{2018\left(a+b+c+d\right)}{a+b+c+d}=2018\)
Lấy 2 cái đầu cộng với nhau ta được:
\(\frac{2016\left(a+b\right)+2\left(c+d\right)}{a+b}=2018\)
\(\Leftrightarrow\frac{c+d}{a+b}=\frac{2018-2016}{2}=1\)
Tương tự ta cũng có:
\(\frac{a+b}{c+d}=;\frac{b+c}{d+a}=1;\frac{d+a}{b+c}=1\)
\(\Rightarrow M=1+1+1+1=4\)
Gọi 2 nhà "thông thái" vẫn cười... vô tư là A và B, nhà thông thái ngừng cười là C.
Ông C nghĩ như sau:
1- Người ta chỉ cười khi người khác bị bôi nhọ còn mình thì không sao.
2- Cả 3 đều là thông thái nên trình độ suy luận là suýt soát nhau.
3- (Quan trọng nhất !) Vì một lúc sau cả 3 vẫn cười nên C đặt mình vào vị trí của A và nghĩ rằng: A nghĩ B có nhọ, còn A thì không, nhưng nếu C cũng không có nhọ vậy thì B cười ai ? Rõ ràng là B cười A , nghĩ vậy A sẽ thôi cười. Nhưng thực tế A vẫn cười suy ra A đã nhìn thấy C có nhọ.
nhà thông thái nghĩ: 2 người kia nhìn mình cười thì trên mặt mình chắc cũng bị bôi nhọ giống như 2 người kia