K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

Do m2; n2 là số chính phương nên m2; n2 chia 3 chỉ có thể dư 0 hoặc 1

+ Nếu m2; n2 chia 3 cùng dư 1 thì m2 + n2 chia 3 dư 2 (trái với đề bài)

+ Nếu trong 2 số m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2 + n2 chia 3 dư 1 (trái với đề bài)

=> m2; n2 cùng chia hết cho 3

Mà 3 là số nguyên tố => m chia hết cho 3; n chia hết cho 3 (đpcm)

Do m2;n2 là số chính phương nên m2;n2 chia hết cho 3 chỉ có thể dư 0 hoặc 1.

+ Nếu m2;n2 chia 3 cùng dư 1 thì m2+n2 chia 3 dư 2 (trái với đề bài có - vô lí)

+ Nếu trong 2 xố m2; n2 có  1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2+n2 chia 3 dư 1 (trái đề bài- vô lí)

=> m2;n2 cùng chia hết cho 3

Mà 3 là số nguyên tố=> m chia hết cho 3; n chia hết cho 3  (điều phải chứng minh)

Terry mới nghĩ ra một cách mới để mở rộng dãy số. Để mở rộng dãy số như [1; 8] anh ấy tạo ra 2 dãy số [2; 9] và [3; 10] (mỗi dãy số được cộng thêm 1 só với dãy ban đầu). Sau đó, anh ta ghép 3 dãy số đó lại thành dãy [1; 8; 2; 9; 3; 10]Nếu anh ấy bắt đầu dãy số bằng số [0] thì anh ấy tạo ra dãy:[0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 6;...........]Vậy số thứ 2012 của dãy số trên là số...
Đọc tiếp

Terry mới nghĩ ra một cách mới để mở rộng dãy số. Để mở rộng dãy số như [1; 8] anh ấy tạo ra 2 dãy số [2; 9] và [3; 10] (mỗi dãy số được cộng thêm 1 só với dãy ban đầu). Sau đó, anh ta ghép 3 dãy số đó lại thành dãy [1; 8; 2; 9; 3; 10]

Nếu anh ấy bắt đầu dãy số bằng số [0] thì anh ấy tạo ra dãy:

[0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 6;...........]

Vậy số thứ 2012 của dãy số trên là số nào?


- Giải thích thêm:

Nếu số bắt đầu là [0] tạo đc 2 số nữa là [1] và [2] => ghép lại [0; 1; 2]

Tiếp với dãy số [0; 1; 2] lại tạo được 2 dãy nữa [1; 2; 3] và [2; 3; 4] => ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4]

Tiếp dãy [0; 1; 2; 1; 2; 3; 2; 3; 4] tạo đc 2 dãy [1; 2; 3; 2; 3; 4; 3; 4; 5] và [2; 3; 4; 3; 4; 5; 4; 5; 6]

=> Ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 5; 6]

.......................................... cứ như vậy tiếp ~~~~~~~~~~

 

P/S: Đáp án thầy mình cho là 9 còn cách làm mik không bik

7
3 tháng 9 2016

=267674646674676656565667666. giup minh nha

3 tháng 9 2016

2010 số hạng sẽ được chia vào 2010:3= 670 nhóm và 2 số hạng còn lại ở nhóm thứ 671. 

Do đó số thứ 2012 sẽ là số hạng thứ 2 của nhóm thứ 671.

Gọi các nhóm theo thứ tự là nhóm 1,2,3...,671

Ta có:

Nhóm 1 có số hạng thứ 2 là 1

Nhóm 2 có số hạng thứ 2 là số 2

Nhóm 3 có số hạng thứ 2 là số 3

....

Nhóm 671 có số hạng thứ 2 là số 671

Vậy số cần tìm là số 671

2 tháng 9 2016

khối gỗ có 6 mặt nên có tổng cộng 6 miệng lỗ và 3 lỗ

a)      diện tích toàn phần khối gỗ: 3x3x6 = 54 dm2

         tổng diện tích miệng lỗ:    1x1x6 = 6 dm2

         diện tích bề mặt khối gỗ sau khi đục còn:    54 - 6 = 48 dm2

            diện tích một lỗ:    1x3x4 = 12 dm2

         do các lỗ giao nhau nên mỗi lỗ có 4 mặt bị mất và diện tích mỗi mặt là 1 dm2

         diện tích mỗi lỗ chỉ còn     12 - 1 x 4 = 8 dm2

        tổng diện tích mặt ngoài và trong:   48 + 8x3 = 72 dm2

b)      thể tích khối gỗ:   33 = 27 dm3

        thể tích một lỗ: 1x1x3 = 3 dm3

        do các lỗ giao nhau nên thể tích phần giao nhau là 13=1 dm3

        thể tích mỗi lỗ ko tính giao nhau: 3-1=2 dm3

       thể tích phần bỏ đi:   2x3+1 = 7 dm3

         phần trăm:   \(\frac{7}{27}\)x  100% \(\approx25,93\%\)

2 tháng 9 2016

sorry vì mk giải vẫn chưa cụ thể lắm và có sai thì bỏ qua nha!

2 tháng 9 2016

AD cắt BC tại H,vẽ EG vuông góc AC tại G.Tứ giác ABEG vuông tại A,B,G nên ABEG là hình chữ nhật có EG = AB.

=> SAEC = AC.EG : 2 = AB2 : 2 mà 

SAHC = HA.HC : 2 (vì AD vuông góc BC) = AD/2.BC/2 : 2 (H là trung điểm AD,BC) 

          =\(\sqrt{2}AB.\sqrt{2}AB\): 8 (định lí Pi-ta-go với tam giác vuông cân ABC,ABD) = AB2 : 4

=> SAECH = AB2 : 2 - AB2 : 4 = AB2 : 4 = 6,25 (cm2) => AB =\(\sqrt{6,25.4}\)= 5 (cm)

Vậy chu vi hình vuông ABCD là : 5.4 = 20 (cm)

2 tháng 9 2016

Gọi O là giao điểm của AD và BC như trên hình. Nối EO cắt AC tại F, dễ dàng chứng minh OE = OF và AF = CF.

Diện tích tam giác OAE bằng \(\frac{1}{2}\) diện tích phần tô đậm và bằng: \(S_{\Delta OAE}=\frac{1}{2}.6,25=3,125\left(cm^2\right)\)

\(S_{\Delta OAE}=S_{\Delta OAF}\) vì có cùng chiều cao AF và đáy OE = OF

\(\Rightarrow\) \(S_{\Delta AEF}=S_{\Delta OAE}+S_{\Delta OAF}=2S_{\Delta OAE}=2.3,125=6,25\left(cm^2\right)\)

Ta có: \(S_{\Delta AEF}=\frac{1}{2}.AF.EF=\frac{1}{2}.\left(\frac{1}{2}EF\right).EF=\frac{1}{4}EF^2\)\(\Rightarrow\)\(\frac{1}{4}EF^2=6,25\)

\(\Rightarrow\)\(EF^2=25\)\(\Rightarrow\)\(EF=5\) (do EF > 0).

Do ABCD là hình vuông nên AB = EF = 5cm nên chu vi hình vuông ABCD là 20cm2.

1 tháng 9 2016

Giả sử: \(a^4\left(b-c\right)+b^4\left(c-a\right)=c^4\left(b-a\right)\)
     \(\Leftrightarrow a^4\left(b-a+a-c\right)+b^4\left(c-a\right)-c^4\left(b-a\right)=0\)
    \(\Leftrightarrow a^4\left(b-a\right)+a^4\left(a-c\right)+b^4\left(c-a\right)-c^4\left(b-a\right)=0\)  
    \(\Leftrightarrow\left(b-a\right)\left(a^4-c^4\right)+\left(a-c\right)\left(a^4-b^4\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(a-c\right)\left(a+c\right)\left(a^2+c^2\right)+\left(a-c\right)\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(c-a\right)\left\{\left(a+c\right)\left(a^2+c^2\right)-\left(a+b\right)\left(a^2+b^2\right)\right\}=0\)
 \(\Leftrightarrow\left(a+c\right)\left(a^2+c^2\right)-\left(a+b\right)\left(a^2+b^2\right)=0\)( do a, b, c phân biệt).
\(\Leftrightarrow ac^2+a^2c+c^3-ab^2-a^2b-b^3=0\)
 \(\Leftrightarrow a^2\left(c-b\right)+a\left(c^2-b^2\right)+\left(c^3-b^3\right)=0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+a\left(b+c\right)+b^2+bc+c^2\right)=0\)
 \(\Leftrightarrow\left(c-b\right)\left(a^2+2.a\frac{b+c}{2}+\frac{b^2+2bc+c^2}{4}+\frac{3b^2+2bc+3c^2}{4}\right)=0\)
\(\Leftrightarrow\left(c-b\right)\left(\left(a+\frac{b+c}{2}\right)^2+\frac{2b^2+3bc+2c^2}{4}\right)=0\)(*).
Do \(\left(a+\frac{b+c}{2}\right)^2\ge0,\frac{2b^2+3bc+2c^2}{4}>0\).
Nên (*) không thể xảy ra. Vậy điều giả sử sai, ta có đpcm.
 

1 tháng 9 2016

Đặt A = a4(b - c) + b4(c - a) + c4(a - b) = a4(b - a + a - c) + b4(c - a) + c4(a - b) = a4(b - a) + a4(a - c) + b4(c - a) + c4(a - b)

          = (a - b)(c4 - a4) + (a - c)(a4 - b4) = (a - b)(c - a)(c + a)(c2 + a2) + (a - c)(a - b)(a + b)(a2 + b2)

          = (a - b)(a - c)[(a + b)(a2 + b2) - (c + a)(c2 + a2)] = (a - b)(a - c)(a3 + ab2 + a2b + b- c3 - a2c - ac2 - a3)

          = (a - b)(a - c)[a2(b - c) + a(b2 - c2) + (b3 - c3)] = (a - b)(a - c)(b - c)[a2 + a(b + c) + b2 + bc + c2]

          = (a - b)(a - c)(b - c)\(\frac{a^2+2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2}{2}\) 

          =\(\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left[\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\right]}{2}\)

Vì a,b,c là 3 số phân biệt nên A khác 0 <=> a4(b - c) + b4(c - a)\(\ne-c^4\left(a-b\right)=c^4\left(b-a\right)\)

1 tháng 9 2016

Em tự vẽ hình nhé.

Ta có: \(\frac{AD}{HD}=\frac{S_{ABC}}{S_{BHC}};\frac{BE}{HE}=\frac{S_{ABC}}{S_{AHC}};\frac{CF}{FH}=\frac{S_{ABC}}{S_{AHB}}\)

Đặt \(S_{ABC}=1;S_{BHC}=a;S_{ACH}=b;S_{AHB}=c.\)

Khi đó ta có: \(a+b+c=1;\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng bất đẳng thức Cosi cho 3 số dương, ta có:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Vậy thì \(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) mà a + b + c = 1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\Rightarrow\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}\ge9\)

4 tháng 9 2016

cam on nha

30 tháng 8 2016

Bằng nhau

30 tháng 8 2016

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .

30 tháng 8 2016

còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)

mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa 

30 tháng 8 2016

lâu nay lười giải quá nhưng thôi mình giải cho bạn.

câu 1: ta gọi 2 số đó là a và b. Ta có:

\(a=x^2+y^2\)

\(b=n^2+m^2\)

=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)

bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2

25 tháng 8 2016

Ta thấy \(\widehat{FEA}=\widehat{BED}=90^o-\widehat{EBD}\)

Tương tự: \(\widehat{EFA}=90^o-\widehat{FCD}\)

Mà \(\widehat{EBD}=\widehat{FCD}\) nên \(\widehat{FEA}=\widehat{EFA}\). Vậy tam giác AEF cân tại A. Do AM là trung tuyến nên suy ra AM cũng là đường cao hay AM // BC.

Từ đó suy ra M chuyển động trên đường thẳng qua A, song song với BC.

25 tháng 8 2016

Cô Huyền ơi em muốn lấy lại nick, có bạn dò ra mật khẩu nick em và đổi rồi ạ huhu