với a, b là các số thực thỏa mãn đẳng thức \(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\). hãy tìm giá trị nhỏ nhất của P=\(\sqrt{1+a^4}+\sqrt{1+b^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/ Vẽ hình ...
2/Bài làm như sau:
Bạn cần thêm điều kiện AB = AD .
Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông
Suy ra : SMNPQ=NQ22SMNPQ=NQ22
Mặt khác, ta luôn có : KQ+QN≥KNKQ+QN≥KN ⇒QN≥|KN−KQ|=12|c−a|⇒QN≥|KN−KQ|=12|c−a|
⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28
Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD

XIN LỖI MÌNH GIẢI NHẦM
THEO ĐỀ TA CÓ,HIỆU CỦA TỬ VÀ MẪU LÀ:
24X2=48
TỬ LÀ:
(210-48);2=81
MẪU LÀ:
210-81=129
VẬY PHÂN SỐ CẦN TÌM LÀ:
\(\frac{81}{129}\)


Hai phân số mới có tổng bằng : \(\frac{3}{7}+\frac{4}{9}=\frac{55}{63}\)
Vậy phân số mới mà lớn hơn là: \(\frac{55}{63}\times\frac{5}{6}=\frac{275}{378}\)
Vậy phân số cần tìm là \(\frac{275}{378}-\frac{3}{7}=\frac{113}{378}\)

a,b lẻ nên suy ra: (a-1)(b-1) chia hết cho 4.
Ta đặt: a=(2k-1)2;b=(2k+1)2.
=>(m-1)=4k(k-1) (k thuộc Z)
(n-1)=4k(k+1).
=>(m-1)(n-1)=16k2(k-1)(k+1)
Mà k(k-1)(k+1) chia hết cho3 (3 số nguyên liên tiếp).
Do k(k-1)và k(k+1) chia hết cho 2
nên suy ra: k2(k+1)(k-1) chia hết cho 12.
=>(a-1)(b-1)=16k2(k+1)(k-1) chia hết cho 192 khi m,n là SCP lẻ liên tiếp.
ta chứng minh bài toán phụ a chia 8 dư 1
đặt a =x^2(x thuộc N)
vì a là số chính phương lẻ nên x lẻ
đặt x=2k+1
ta có: x^2=(2k+1)^2=(2k)^2+2.2k+1=4k^2+4k+1=4(k+k^2)+1
vì k và k^2 là 2 số cùng tính chẵn lẻ suy ra 4(k+k^2) chia hết cho 8 suy ra 4(k+k^2)+1 chia hết cho 8 dư 1(đpcm)
Theo đề bài suy ra a chia 8 dư 1, b chia 8 dư 1 suy ra a-1 chia hết cho 8, b-1 chia hết cho 8
suy ra (a-1)(b-1) chia hết cho 64
vì 1 số chính phương chia 3 dư 1 suy ra a-1, b-1 chia hết cho 3
suy ra (a-1)(b-1) chia hết cho 3
vì (3,64)=1 suy ra (a-1)(b-1) chia hết cho 192(đpcm)
vậy (a-1)(b-1) chia hết cho 192

Trừ số đó đi 9, nó sẽ chia hết cho 11 và 14. Gọi số đó là A, số mới là B, ta có:
B : 11 = 1/11 của B
B : 14 = 1/14 của B
2 thứ trên chênh lệch nhau là:
1/11 - 1/14 = 3/154 (B)
Vậy 3/154 của B là 3
Số B là:
3 : 3/154 = 154
Số A là:
154 + 9 = 163
Đáp số: 163
Trừ số đó đi 9, nó sẽ chia hết cho 11 và 14. Gọi số đó là A, số mới là B, ta có:
B : 11 = \(\frac{1}{11}\)của B
B : 14 = \(\frac{1}{14}\)của B
Hai thứ trên chênh lệch nhau là:
\(\frac{1}{11}-\frac{1}{14}\text{=}\frac{3}{154}\left(B\right)\)
Vậy \(\frac{3}{154}\)của B là 3
Vậy B là:
\(3:\frac{3}{154}\text{=}154\)
Vậy A là:
145 + 9 = 163
Đáp số: 163

goi a là số lít nước mắm; b là số can , ta có:
\(\hept{\begin{cases}a=5b+5\\a=6b-6\end{cases}\Leftrightarrow\hept{\begin{cases}a=60\\b=11\end{cases}}}\)
vậy ....
gọi a là số lít nứơc mắm , b là số can , ta có :
\(\hept{\begin{cases}a=5b+5\\a=6b-6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=60\\b=11\end{cases}}\)
hok tốt

a) Xét ∆ANE và ∆CNM có:
^ANE = ^CNM (đối đỉnh)
AN = CN (gt)
^EAN = ^MCN (AE//MC, so le trong)
Do đó ∆ANE = ∆CNM (g.c.g)
=> AE = CM (hai cạnh tương ứng)
Mà BM = CM (gt) nên AE = BM
Tứ giác AEMB có AE = BM và AE // BM nên là hình bình hành => AB = ME (đpcm)
b) Tứ giác AECM có AE = CM (cmt) và AE // CM nên là hình bình hành
∆ABC đều nên AM là đường trung tuyến cũng là đường cao => AMC = 900
Tứ giác AMCE là hình bình hành có một góc vuông nên là hình chữ nhật (đpcm)
c) Ta có: MC = 1/2BC = 1/2AB = 1/2.16 = 8 (cm) và AB = AC = 16 (cm)
∆AMC vuông tại M suy ra AM^2 = AC^2 - MC^2 = 16^2-8^2 = 192 (theo định lý Pythagoras)
=> AM = 8√3 (cm)
Diện tích hình chữ nhật AMCE là 8√3 . 8 = 64√3 (cm^2)
Ta có : \(\frac{9}{4}=\left(1+a\right)\left(1+b\right)\le\frac{1}{4}\left(a+b+2\right)^2\)
\(\Leftrightarrow\left(a+b+2\right)^2\ge9\Leftrightarrow a+b+2\ge3\Leftrightarrow a+b\ge1\)
Áp dụng BĐT Mincopxki , ta có : \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1^2+1^2\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}\left(a+b\right)^4}\ge\sqrt{\frac{17}{4}}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Vậy minP = \(\frac{\sqrt{17}}{2}\Leftrightarrow a=b=\frac{1}{2}\)
\(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)
\(\Leftrightarrow1+a+b+ab=\frac{9}{4}\Leftrightarrow a+b+ab=\frac{5}{4}\)
Áp dụng Bđt Cô si ta có: \(a^2+b^2\ge2ab\)
\(2\left(a^2+\frac{1}{4}\right)\ge2a;2\left(b^2+\frac{1}{4}\right)\ge2b\)
\(\Rightarrow3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Áp dụng Bđt Bunhiacopski ta cũng có:
\(P\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)
Dấu = khi \(x=y=\frac{1}{2}\)