Chứng minh rằng số C = 44...4488...89 có n số 4 và n-1 số 8, viết được dưới dạng bình phương của 1 số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta có :
\(ab>2016a+2017b\Rightarrow a\left(b-2016\right)>2017b\) hay ta có : \(a>\frac{2017b}{b-2016}\)
Vậy \(a+b>\frac{2017b}{b-2016}+b=b+2017+\frac{2016\times2017}{b-2106}=b-2016+\frac{2016\times2017}{b-2106}+2016+2017\)
\(\ge2\sqrt{2016\times2017}+2016+2017=\left(\sqrt{2016}+\sqrt{2017}\right)^2\)
Vậy ta có đpcm

Nhận thấy n=2 thỏa mãn điều kiện
Với n>2 ta có:
\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n^3-1\right)\left(n+1\right)\left(n^2-n+1\right)\)
Do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n^3-1\)hoặc \(n^2-1=\left(n-1\right)\left(n+1\right)\)
Để ý rằng \(\left(n^2-n+1;n^3-1\right)\le\left(n^3+1;n^3-1\right)\le2\)
Mặt khác \(n^2-n+1=n\left(n-1\right)+1\)là số lẻ, do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n+1\)
Nhưng \(n^2-n+1=\left(n+1\right)\left(n-2\right)+3\)
Vì vậy ta phải có \(n^2-n+1=3^k\left(k\in Z^+\right)\)
Vì \(n>2\Rightarrow k\ge2\)
do đó \(3|n^2-n+1\Rightarrow n\equiv2\left(mod3\right)\)
Nhưng mỗi TH \(n\equiv2,5,8\left(mod9\right)\Rightarrow n^2-n+1\equiv3\left(mod9\right)\)(mâu thuẫn)
Vậy n=2
Bài làm rất hay mặc dù làm rất tắt.
Tuy nhiên:
Dòng thứ 4: Ước số nguyên tố của \(n^2-n+1\)chia hết cho \(n^3-1\)hoặc \(n^2-1\)( em viết thế này không đúng rồi )
------> Sửa: ước số nguyên tố của \(n^2-n+1\) chia hết \(n^3-1\) hoặc \(n^2-1\)
Hoặc: ước số nguyên tố của \(n^2-n+1\) là ước \(n^3-1\) hoặc \(n^2-1\)
Dòng thứ 6 cũng như vậy:
a chia hết b khác hoàn toàn a chia hết cho b
a chia hết b nghĩa là a là ước của b ( a |b)
a chia hết cho b nghĩa là b là ước của a.( \(a⋮b\))
3 dòng cuối cô không hiểu em giải thích rõ giúp cô với. Please!!!!
Nhưng cô có cách khác dễ hiểu hơn này:
\(n^2-n+1=3^k\);
\(n+1⋮3\)=> tồn tại m để : n + 1 = 3m
=> \(\left(n+1\right)\left(n-2\right)+3=3^k\)
<=>\(3m\left(n+1-3\right)+3=3^k\)
<=> \(m\left(n+1\right)-3m+1=3^{k-1}\)
=> \(m\left(n+1\right)-3m+1⋮3\)
=> \(1⋮3\)vô lí

Gọi ba số đó là \(a,b,c\)(\(a,b,c\inℕ^∗\))
\(a+b+c=100\)
\(P=abc\).
Dễ thấy GTNN của \(P\)đạt tại hai số bằng \(1\), một số bằng \(98\).
\(minP=98\)khi \(\left(a,b,c\right)=\left(1,1,98\right)\)và các hoán vị.
Giờ ta sẽ tìm GTLN của \(P\).
Giả sử \(a\ge b\ge c\).
Ta có nhận xét rằng \(P\)đặt giá trị lớn nhất khi hai trong ba số trên có hiệu không vượt quá \(1\).
Giả sử \(a-b>1\).
Khi đó thay \(a\)bởi \(a-1\), \(b\)bởi \(b+1\)ta có:
\(c\left(a-1\right)\left(b+1\right)=c\left(ab+a-b-1\right)>cab\)
Do đó \(P\)đạt GTLN khi \(a\ge b\ge c\), \(a-c\le1\).
Kết hợp với \(a+b+c=100\)suy ra \(P\)đạt max tại \(a=34,b=c=33\).
Khi đó \(maxP=34.33^2\).
Dấu \(=\)khi \(\left(a,b,c\right)=\left(34,33,33\right)\)và các hoán vị.

gọi 3 số đó là a,b,c
a+b+c=100
theo bdt cosi: a+b+c>=\(3\sqrt[3]{abc}\)
\(\Leftrightarrow100\ge3\sqrt[3]{abc}\Leftrightarrow\frac{1000000}{27}\ge abc\)
vậy abc đạt gtln là 1000000/27 hay tích 3 số đó có GTLN là 1000000/27

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{abc}=1\)
\(\Leftrightarrow ab+bc+ca+1=abc\)
Nếu \(a,b,c\)đều là số lẻ thì \(VT\)là số chẵn, \(VP\)là số lẻ (mâu thuẫn)
Do đó có một trong ba số là số chẵn.
Giả sử \(c=2\): xét \(a\ge b>2\)
\(ab+2a+2b+1=2ab\)
\(\Leftrightarrow ab-2a-2b-1=0\)
\(\Leftrightarrow\left(a-2\right)\left(b-2\right)=5=1.5\)
\(\Rightarrow\hept{\begin{cases}a-2=5\\b-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=7\\b=3\end{cases}}\)
Vậy \(\left(a,b,c\right)=\left(7,3,2\right)\)và các hoán vị.

a) Ta có: sin30=cos60, sin50=cos40
Mà cos30 < cos38 < cos40 < cos60 < cos80
Nên cos30 < cos38 < sin50 < sin30 < cos80
b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)
và: sin49=cos41 => cos30 < sin49 (2)
Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)
Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63
TA CÓ \(\sin30\)= \(\cos60\)
\(\sin50=\cos40\)
---->> \(\cos30< \cos38< \cos40< \cos60< \cos80\)
------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)
Cái kia làm tương tự nhoa
Bạn xin 1 cái k

điều kiện: \(x\ge\frac{1}{2}\)
ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)
\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)
\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)
TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)
TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)
( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)

Chắc để là tìm max
\(A=\sqrt{xy+3yz+2z^2}+\sqrt{yz+3xz+2x^2}+\sqrt{xz+3xy+2y^2}\)
Với x,y > 0 ta luôn có \(\sqrt{ab}\le\frac{a+b}{2}\)
Dấu "=" xảy ra khi a = b
Áp dụng ta được:
\(2\sqrt{\frac{3}{2}}\sqrt{xy+3yz+2z^2}\le\frac{3}{2}+xy+3yz+2z^2\)
Tương tự: \(2\sqrt{\frac{3}{2}}\sqrt{yz+3xz+2x^2}\le\frac{3}{2}+yz+3xz+2x^2\)
\(2\sqrt{\frac{3}{2}}\sqrt{xz+3xy+2y^2}\le\frac{3}{2}+xz+3xy+2y^2\)
Cộng theo vế ta được :
\(2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+4xy+4yz+4xz+2x^2+2y^2+2z^2\)
Ngoài ra với mọi số thực x,y,z ta có :
\(x^2+y^2+z^2\ge xy+yz+xz\)
Dấu "=" xảy ra khi x = y = z
\(\Rightarrow2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+6\left(x^2+y^2+z^2\right)\le\frac{9}{2}+6\times\frac{3}{4}=9\)
\(\Rightarrow A\le\frac{3\sqrt{6}}{2}\).
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
ta có
\(C=444..4000..0+888..8+1=4.10^n\left(1+10+..+10^{n-1}\right)+8.\left(1+10+..+10^{n-1}\right)+1\)
\(=4.10^n\frac{10^n-1}{9}+8\frac{10^n-1}{9}+1=\frac{4.10^{2n}+4.10^n+1}{9}=\left(\frac{2.10^n+1}{3}\right)^2\)
rõ ràng C là số tự nhiên nên \(\frac{2.10^n+1}{3}\) là số tự nhiên, vậy ta có đpcm
minh quang ơi bạn giải thích chi tiết ra đc không