Tồn tại hay không các số nguyên dương a và b sao cho a2 +b+2, b2 +a+2
và a+b+4 là các số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện: \(x\ge\frac{1}{2}\)
ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)
\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)
\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)
TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)
TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)
( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)
\(7x^3+11=3\left(x+y\right)\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y\right)^3+7x^3+11+1=\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3+7x^3+3xy\left(3x+y\right)=\left(x+y\right)^3+3\left(x+y\right)^2+3\left(x+y\right)+1\)
\(\Leftrightarrow8x^3+12x^2y+6xy^2+y^3=\left(x+y+1\right)^3\)
\(\Leftrightarrow\left(2x+y\right)^3=\left(x+y+1\right)^3\)
\(\Leftrightarrow2x+y=x+y+1\)
\(\Leftrightarrow x=1\)
Với \(x=1\):
\(y\left(3+y\right)=4\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-4\end{cases}}\).
ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\hept{\begin{cases}\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\\\frac{z}{x+y+z+t}< \frac{z}{x+z+t}< \frac{z+y}{x+y+z+t}\\\frac{t}{x+y+z+t}< \frac{t}{x+y+t}< \frac{t+z}{x+y+z+t}\end{cases}}\)
Cộng lại ta có : \(1< M< 2\) Vậy M không phải số tự nhiên
x,y,z,t thuộc N khác 0 nên x,y,z,t thuộc N sao
=> x/x+y+z > 0
=> x/x+y+z > x/x+y+z+t
Tương tự : y/x+y+t > y/x+y+z+t
z/y+z+t > z/x+y+z+t
t/x+z+t > t/x+y+z+t
=> M > x+y+z+t/x+y+z+t = 1
Lại có : x < x+y+z => x/x+y+z < 1 => 0 < x/x+y+z < 1
=> x/x+y+z < x+t/x+y+z+t
Tương tự : y/x+y+t < y+z/x+y+z+t
z/y+z+t < z+x/x+y+z+t
t/x+z+t < t+y/x+y+z+t
=> M < 2x+2y+2z+2t/x+y+z+t = 2
Vậy 1 < M < 2
=> M ko phải là số tự nhiên
Tk mk nha
ta có , theo định lí viet nên : \(\hept{\begin{cases}x_1+x_2=-m\\x_1x_2=\frac{m^2-2}{2}\end{cases}\Rightarrow}x_1x_2=\frac{\left(x_1+x_2\right)^2-2}{2}\Leftrightarrow x_1^2+x_2^2=2\)
.ta có
\(A=2x_1x_2+\frac{3}{x_1^2+x_2^2+2x_1x_2+2}=2x_1x_2+\frac{3}{2x_1x_2+4}\)
Mà \(2=x_1^2+x_2^2\ge2\left|x_1x_2\right|\Rightarrow-1\le x_1x_2\le1\)
trên đọna [-1,1] hàm trên đồng biến nên : \(min=-2+\frac{3}{-2+4}=-\frac{1}{2}\)
\(m=2+\frac{3}{2+4}=\frac{5}{2}\)
Sau khi bán thì chênh lệch giữa cam và quýt là:
145-15+5=135 (kg)
Số phần mà 135 kg tương ứng là:
8-3=5 (phần)
Số kg cam cửa hàng có ban đầu là:
( 135:3x8)+15=375 (kg)
Số kg quýt của hàng có ban đầu là:
375-145=230 (kg)
Đáp số: Cam 375 kg
Quýt 230 kg
ai k mk mk k lại
Sau khi bán thì chênh lệch giữa cam và quýt là :
145 - 15 + 5 = 135 (kg)
Số phần mà 135 kg tương ứng là :
8 - 5 = 3 (phần)
Số kg cam cửa hàng có ban đầu là :
( 135 : 3 x 8 ) + 15 = 375 (kg)
Số Kg quýt cửa hàng có ban đầu là :
375 - 145 = 230 (kg)
Đáp Số :...
A+4=mc2
dfrgthyjutiyrerytrydtttttttttttttttttttttttttttttttttttttttttuuuuuuuuuuuuuiiyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy ttttttttttttttttttttttrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrnnnnnnnnnnnnnnnnnnnnnn