Cho tam giác ABC có AB = 3cm AC=4cm BC=5cm
a) chứng tỏ tam giác ABc vuông tại A
b) vẽ tia phân giác BD (D thuộc AC) từ D vẽ DE vuông góc BC(E thuộc BC). Chứng minh DA=DE
c) ED cắt AB tại F . Chứng minh tam giác ADF rồi suy ra DF > DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
<=> ad + a2 + bd + ab = bc + bd + c2 + cd
<=> ad + a2 + bd + ab - bc - bd - c2 - cd = 0
<=> ad + a2 + ab - bc - c2 - cd = 0
<=> ( ad - cd ) + ( a2 - c2 ) + ( ab - bc ) = 0
<=> d( a - c ) + ( a - c )( a + c ) + b( a - c ) = 0
<=> ( a - c )( a + b + c + d ) = 0
<=> \(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}\left(đpcm\right)}\)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)
TH1: \(a+b+c+d=0\Rightarrowđpcm\)
TH2: \(a+b+c+d\ne0\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}=1\)
\(\Rightarrow a+b=b+c\)
\(\Rightarrow a=c\left(đpcm\right)\)
Đặt \(z=a+bi\), \(z\ne i\).
\(\left|z-1+2i\right|=\sqrt{10}\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2=10\)
\(\Leftrightarrow a^2-2a+1+b^2+4b+4=10\)
\(\Leftrightarrow a^2+b^2=5+2a-4b\)(1)
\(\frac{2z+3-i}{z-i}=\frac{\left(2a+3\right)+\left(2b-1\right)i}{a+\left(b-1\right)i}=\frac{\left[\left(2a+3\right)+\left(2b-1\right)i\right]\left[a-\left(b-1\right)i\right]}{a^2+\left(b-1\right)^2}\)
\(=\frac{a\left(2a+3\right)+\left(2b-1\right)\left(b-1\right)+\left[a\left(2b-1\right)-\left(2a+3\right)\left(b-1\right)\right]i}{a^2+\left(b-1\right)^2}\)
là số thuần ảo nên \(a\left(2a+3\right)+\left(2b-1\right)\left(b-1\right)=2a^2+3a+2b^2-3b+1=0\)
\(\Leftrightarrow2\left(5+2a-4b\right)+3a-3b+1=0\)
\(\Leftrightarrow7a-11b+11=0\)
\(\Leftrightarrow a=\frac{11b-11}{7}\)
Thế vào (1) ta được:
\(\left(\frac{11b-11}{7}\right)^2+b^2-5-\frac{2\left(11b-11\right)}{7}+4b=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=1\Rightarrow a=0\\b=\frac{3}{17}\Rightarrow a=\frac{-22}{17}\end{cases}}\)
Chỉ có \(z=\frac{-22}{17}+\frac{3}{17}i\)thỏa mãn.
Vậy có \(1\)số phức \(z\)thỏa mãn ycbt.
\(2021n-19\equiv21n+21\left(mod40\right)\)suy ra ta cần chứng minh \(n+1⋮40\)(vì \(\left(21,40\right)=1\)).
Đặt \(m=n+1\). Ta sẽ chứng minh \(m⋮40\).
Đặt \(2m+1=a^2,3m+1=b^2\).
\(2m+1\)là số lẻ nên \(a\)là số lẻ suy ra \(a=2k+1\).
\(2m+1=\left(2k+1\right)^2=4k^2+4k+1\Rightarrow m=2\left(k^2+k\right)\)nên \(m\)chẵn.
do đó \(3m+1\)lẻ nên \(b\)lẻ suy ra \(b=2l+1\).
\(3m+1=4l^2+4l+1\Leftrightarrow3m=4l\left(l+1\right)\)có \(l\left(l+1\right)\)là tích hai số nguyên liên tiếp nên chia hết cho \(2\)do đó \(4l\left(l+1\right)\)chia hết cho \(8\)suy ra \(m⋮8\)vì \(\left(3,8\right)=1\).
Giờ ta sẽ chứng minh \(m⋮5\).
Nếu \(m=5p+1\): \(2m+1=10p+3\)có chữ số tận cùng là \(3\)nên không là số chính phương.
Nếu \(m=5p+2\): \(3m+1=15m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương.
Nếu \(m=5p+3\): \(2m+1=10m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương.
Nếu \(m=5p+4\): \(3m+1=15m+13\)có chữ số tận cùng là \(3\)nên không là số chính phương.
Do đó \(m=5p\Rightarrow m⋮5\).
Có \(m⋮8,m⋮5\)mà \(\left(5,8\right)=1\)suy ra \(m⋮\left(5.8\right)\Leftrightarrow m⋮40\).
Ta có đpcm.
Hiện nay chị hơn em là 8 tuoiir. Biết rằng khi tuổi của em bằng tuổi của chị hiện nay thì tuổi của chị khi đó gấp 2 lần của em hiện nay. Tính tuổi 2 người hiện nay
1,Tuổi con hiện nay gấp 1,2 lần tuổi mẹ nhưng biết rằng khi mẹ 35 tuổi thì con 14 tuổi . Tính tuổi con hiện nay?
[giải giúp mình nha . Mình cảm ơn ]
a) Có 4 hình tam giác . b) chu vi là 96 . c) còn diện tích mik chưa bt cách giải cơ . I am realy sory.
^_^ HIX
Dựng hình bình hành \(ABEC\).
Khi đó \(E\in DC\).
Vì \(BD\perp AC\)mà \(AC//BE\)nên \(BE\perp BD\).
Kẻ \(BH\perp DE\).
Xét tam giác \(BED\)vuông tại \(B\)đường cao \(BH\):
\(\frac{1}{BH^2}=\frac{1}{BD^2}+\frac{1}{BE^2}\Leftrightarrow\frac{1}{4^2}=\frac{1}{5^2}+\frac{1}{BE^2}\Leftrightarrow BE=\frac{20}{3}\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.BD.BE=\frac{1}{2}.5.\frac{20}{3}=\frac{50}{3}\left(cm^2\right)\)
Tổng quát:
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
Suy ra: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(A=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 1+2\left(\sqrt{2}-\sqrt{1}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=1+2\left(\sqrt{100}-\sqrt{1}\right)=19\)
\(A=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=2\left(\sqrt{100}-\sqrt{1}\right)=18\)
Do đó ta có đpcm.
\(A=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)=b\left(a^5-a\right)-a\left(b^5-b\right)\)
Ta sẽ chứng minh \(x^5-x\)chia hết cho \(30\)với \(x\)nguyên.
Ta có:
\(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)
Có: \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)là tích của \(5\)số nguyên liên tiếp nên nó chia hết cho \(2,3,5\)mà \(2,3,5\)đôi một nguyên tố cùng nhau nên nó chia hết cho \(2.3.5=30\)
\(x\left(x-1\right)\left(x+1\right)\)là tích của \(3\)số nguyên liên tiếp nên nó chia hết cho \(2,3\)mà \(2,3\)nguyên tố cùng nhau nên nó chia hết cho \(2.3=6\)suy ra \(5x\left(x-1\right)\left(x+1\right)⋮30\)
suy ra \(x^5-x⋮30\)với \(x\)nguyên.
Do đó \(A=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)=b\left(a^5-a\right)-a\left(b^5-b\right)\)chia hết cho \(30\)với \(a,b\)là số nguyên.
Nếu có \(2\)học sinh đạt giải cả \(3\)môn thì có ít nhất \(3\)học sinh đạt giải \(2\)môn, \(4\)học sinh chỉ đạt giải \(1\)môn.
Khi đó có số giải là:
\(3\times2+2\times3+1\times4=16\)(giải) lớn hơn \(15\)giải.
Do đó chỉ có \(1\)học sinh đạt giải cả \(3\)môn.
Do bất kì hai môn nào cũng có ít nhất \(1\)học sinh đạt giải cả hai môn nên số học sinh đạt giải hai môn ít nhất là \(3\)học sinh.
Nếu có từ \(4\)học sinh trở lên đạt giải hai môn, thì có ít nhất \(5\)học sinh đạt \(1\)giải, khi đó tổng số giải ít nhất là:
\(3\times1+2\times4+1\times5=16\)(giải)
Do đó chỉ có \(3\)học sinh đạt \(2\)giải. Khi đó số học sinh đạt \(1\)giải là:
\(\left(15-3\times1-2\times3\right)\div1=6\)(học sinh)
Đội tuyển học sinh giỏi đó có số học sinh là:
\(1+3+6=10\)(học sinh)
a)Ta có: BC2=52=25 (1)
AB2+AC2=32+42=25 (2)
Từ (1);(2)=>BC2=AB2+AC2(=25)
=>tam giác ABC vuông tại A (PyTaGo đảo)
b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:
BD:cạnh chung
^ABD=^EBD (vì BD là phân giác của ^ABE)
=>tam giác ABD=tam giác EBD(ch-gn)
=>DA=DE (cặp cạnh t.ứ)
b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)
Mà DA=DE(cmt)
=>DF>DE
Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:
DA=DE(cmt)
^ADF=^EDC (2 góc đối đỉnh)
=>tam giác ADF=tam giác EDC (cgv-gnk)
=>DF=DC (cặp cạnh t.ứ)
DF ko bằng DE bn nhé!