CHO HÌNH TAM GIÁC ABC . TRÊN CẠNH AC LẤY ĐIỂM N SAO CHO AN BẰNG 1/4 AC . TRÊN CẠNH BC LẤY ĐIỂM M SAO CHO MB=MC. NỐI M VỚI N KÉO DÀI CẮT BA KÉO DÀI TẠI P . TÍNH DIỆN TÍCH HÌNH TAM GIÁC ABC BIẾT DIỆN TÍCH HÌNH TAM GIÁC PAN BẰNG 10 CM2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Theo tính chất hai tiếp tuyến cắt nhau ta có
a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180∘=90∘.
b) CD = CM + MD = CA + DB.
c) AC.BD=MC.MD=OM2AC.BD=MC.MD=OM2 (cố định).

Do chiều dài hình chữ nhật MNPQ gấp đôi chiều dài hình ABCD
chiều rộng hình chữ nhật MNPQ gấp 3 lần chiều rộng hình ABCD
Nên Diện tích hình MNPQ gấp :
2 x 3 = 6 ( lần )
Diện tích hình MNPQ là
102 x 6 = 612 ( m2 )
Đ/s ": 612 m2

65% ứng với:
(520 : 100) * 65 =338 (sản phẩm)
vậy đội còn phải làm thêm:
520-338=182 (sản phẩm)
đáp số : 182 sản phẩm

dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2

Ta có bài toán sau: Xét tam giác ABC vuông tại A, tam giác MNP vuông tại M.
Nếu \(BC=NP\) hoặc \(BC\equiv NP\)thì \(AC>MP\Leftrightarrow\widehat{ABC}>\widehat{MNP}.\)
Chứng minh:
A B C M N P D O
Trên mặt phẳng chứa hai tam giác, lấy điểm D sao cho \(\Delta BDC=\Delta NMP\) (D,A khác phía so với BC)
Ta có \(\widehat{MNP}=\widehat{DBC},MP=DC\)
Xét tam giác ACD: \(AC>MP=CD\), suy ra \(\widehat{ADC}>\widehat{DAC}\)(1)
Gọi O là trung điểm BC, dễ thấy O cách đều A,B,C,D. Do đó:
\(\widehat{ADC}=\frac{1}{2}\widehat{AOC}=\widehat{ABC};\widehat{DAC}=\frac{1}{2}\widehat{DOC}=\widehat{DBC}=\widehat{MNP}\)(2)
Từ (1),(2) suy ra \(\widehat{ABC}>\widehat{MNP}\). Tương tự ta có thể chứng minh chiều ngược lại của bài toán.
Giải:
A B C M N D H K
Xét \(\Delta BMC\) và \(\Delta CNB\): Chung cạnh BC, BM = CN, \(\widehat{MBC}< \widehat{NCB}\); suy ra \(CM< BN\)
Dựng hình bình hành BMDN, ta có \(CM< BN=MD\)
Xét tam giác CMD: \(CM< MD\), suy ra \(\widehat{MDC}< \widehat{MCD}\)
Dễ thấy tam giác CND cân tại N, do vậy \(\widehat{MDC}-\widehat{NDC}< \widehat{MCD}-\widehat{NCD}\)
Hay \(\widehat{NDM}< \widehat{NCM}\). Gọi H và K là hình chiếu của N trên MD và MC.
Theo bài toán trên thì \(NH< NK\), từ đó \(\widehat{NMH}< \widehat{NMK}\)hay \(\widehat{BNM}< \widehat{CMN}\)(đpcm).

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)
Vậy với x = 4 thì A = 3/4
b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )

Gọi ba phân số lần lượt cần tìm là: \(\frac{a}{x};\frac{b}{y};\frac{c}{z}\left(x,y,z\ne0\right)\)
Theo bài ra, ta có:
\(\frac{a}{3}=\frac{b}{7}=\frac{c}{11}\)(1)
\(\frac{x}{10}=\frac{y}{20}=\frac{z}{40}\Leftrightarrow x=\frac{y}{2}=\frac{z}{4}\)(2)
Từ (1)(2) =>
\(\frac{\frac{a}{3}}{x}=\frac{\frac{b}{7}}{\frac{y}{2}}=\frac{\frac{c}{11}}{\frac{z}{4}}=\frac{\frac{a}{x}}{3}=\frac{\frac{b}{y}}{\frac{7}{2}}=\frac{\frac{c}{z}}{\frac{11}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{\frac{a}{x}}{3}=\frac{\frac{b}{y}}{\frac{7}{2}}=\frac{\frac{c}{z}}{\frac{11}{4}}=\frac{\frac{a}{x}+\frac{b}{y}+\frac{c}{z}}{3+\frac{7}{2}+\frac{11}{4}}=\frac{\frac{39}{20}}{\frac{37}{4}}=\frac{39}{185}\)
\(\frac{a}{x}=\frac{39}{185}.3=\frac{117}{185}\)
\(\frac{b}{y}=\frac{39}{185}.\frac{7}{2}=\frac{273}{370}\)
\(\frac{c}{z}=\frac{39}{185}.\frac{11}{4}=\frac{429}{740}\)