Cho ax+by=3; ax2+by2=5; ax3+by3=9; ax4+by5=17.Hãy tính ax5 + by5 và ax2014+by2014?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


* Lúc 3 lò co mắc song song :
Điện trở tương đương của ấm : \(R_1=\frac{R}{3}=40\left(\Omega\right)\)
Dòng điện chạy trong mạch : \(I_1=\frac{U}{R_1+r}\)
Thời gian \(t_1\)cần thiết để đun ấm nước đến khi sôi :
\(Q=R_1.I^2.t_1\Rightarrow\frac{Q}{R_1I^2}=\frac{Q}{R_1\left(\frac{U}{R_1+r}\right)}\)hay \(\frac{Q\left(R_1+r\right)^2}{U^2R_1}\)(1)
* Lúc 3 lò xo mắc song song ( Tương tự trên , ta có )
\(R_2=\frac{R}{2}=60\left(\Omega\right)\)
\(I^2=\frac{U}{R_2+r}\)
\(t^2=\frac{Q\left(R_2+R\right)^2}{U^2+R_2}\)(2)
Được : \(\frac{t_1}{t_2}\)\(=\frac{R_2\left(R_1+r\right)^2}{R_1\left(R_2+r\right)^2}=\frac{60\left(40+50\right)^2}{40\left(60+50\right)^2}=\frac{243}{242}\approx1\)
* Vậy \(t_1\approx t_2\)

Câu đề HN vừa thi hôm trước, sửa thành tìm max
Áp dụng BĐT Bunyakovsky ta có:
\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\le6\)
\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\sqrt{6}\)
Dấu "=" xảy ra khi a = b = c = 1/3
Làm xong mới thấy không giống lắm hihi:D

BĐT quen thuộc:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\) => Bunyakovsky dạng phân thức
\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a=b=c

Gọi vận tốc bè gỗ là v1 (km/h) (v1 > 0)
=> Vận tốc thuyền : v1 + 4 km/h (v1 + 4 > 0)
Đổi : 3 giờ 20 phút = 10/3 giờ
Ta có v1.10/3 + v1.\(\frac{10}{v_1+4}\) = (v1 + 4).\(\frac{10}{v_1+4}\) (= 10)
=> v1.10/3 + v1.\(\frac{10}{v_1+4}\) = v1.\(\frac{10}{v_1+4}\)+ 4\(\frac{10}{v_1+4}\)
=> \(\frac{v_1.10}{3}=\frac{40}{v_1+4}\)
=> 3.40 = (v1+ 4).v1.10
=> (v1 + 4).v1 = 12
=> (v1)2 + 4.v1 - 12 = 0
=> (v1 + 2)(v1 - 6) = 0
=> \(\orbr{\begin{cases}v_1+2=0\\v_1-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}v_1=-2\left(\text{loại}\right)\\v_1=6\left(tm\right)\end{cases}}\)
Vậy vận tốc của bè là 6km/h

+) Áp dụng bất đẳng thức Cauchy-Schwarz, ta được: \(A=\sqrt{7-x}+\sqrt{2+x}\le\sqrt{2\left(7-x+2+x\right)}=3\sqrt{2}\)
Đẳng thức xảy ra khi \(7-x=2+x\Leftrightarrow x=\frac{5}{2}\)
+) \(A=\sqrt{7-x}+\sqrt{2+x}\Rightarrow A^2=9+2\sqrt{\left(7-x\right)\left(2+x\right)}\ge9\Rightarrow A\ge3\)
Đẳng thức xảy ra khi \(\left(7-x\right)\left(2+x\right)=0\Leftrightarrow\orbr{\begin{cases}x=7\\x=-2\end{cases}}\)
Vậy \(MinA=3\Leftrightarrow x\in\left\{7;-2\right\};MaxA=3\sqrt{2}\Leftrightarrow x=\frac{5}{2}\)


bài 1 ta có
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\) ( BDT Bunhia )
do đó
\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)
vậy ta có đpcm.
bài 2.
ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )
\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)
suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)