K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

a) đk: \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có:

\(M=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\div\left(\frac{1}{\sqrt{x}+1}-\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{2}{x-1}\right)\)

\(M=\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}\div\frac{\sqrt{x}-1+\left(\sqrt{x}+1\right)\sqrt{x}+2}{x-1}\)

\(M=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}\cdot\frac{x-1}{\sqrt{x}-1+x+\sqrt{x}+2}\)

\(M=\frac{4\sqrt{x}}{x+2\sqrt{x}+1}=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)^2}\)

b) Áp dụng BĐT Cauchy ta có: \(\left(\sqrt{x}+1\right)^2\ge4\sqrt{x}\)

\(\Rightarrow M=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)^2}\le1\)

Dấu "=" xảy ra khi x = 1 => mâu thuẫn đk

=> \(M< 1\)

c) Vì \(\hept{\begin{cases}4\sqrt{x}\ge0\\\left(\sqrt{x}+1\right)^2>0\end{cases}}\Rightarrow\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)^2}\ge0\)

Từ b =>  \(1>M\ge0\)

28 tháng 12 2020
Bạn tham khảo lời giải của mình nhé !

Bài tập Tất cả

2 tháng 3 2020

https://dehocsinhgioi.com/de-thi-chon-hsg-tinh-lop-9-cap-thcs-vong-tinh-nam-2018-2019-tinh-nghe-an-bang-a-co-dap-an/

bạn tham khảo nhé

4 tháng 4 2020

 bài toán hay

\(P^2=a+b+c+a^2+b^2+c^2+2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}+2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}+2\sqrt{\left(a+b^2\right)\left(c+a^2\right)}.\)

Theo bđt Bunhiacopski ta có

\(2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}\ge2\sqrt{b^3}\)(vì \(a,c\ge0\))

Tương tự \(2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}\ge2\sqrt{c^3}\)

                \(2\sqrt{\left(c+a^2\right)\left(a+b^2\right)}\ge2\sqrt{a^3}\)

\(\Rightarrow P^2\ge a+b+c+a^2+b^2+c^2+2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\)

Theo gt : \(\hept{\begin{cases}a,b,c\ge0\\a^2+b^2+c^2=1\end{cases}\Rightarrow0\le a,b,c\le1}\)

\(\Rightarrow\hept{\begin{cases}a\ge a^2,b\ge b^2,c\ge c^2\\a^3\ge a^4,b^3\ge b^4,c^3\ge c^4\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b+c\ge a^2+b^2+c^2=1\\2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\ge2\left(a^2+b^2+c^2\right)=2\end{cases}}\)

\(\Rightarrow P^2\ge1+1+2=4\)\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi a=b=0,c=1 và các hoán vị của nó

Tìm Max

Theo bđt Bunhiacopski ta có

\(P^2\le\left(1+1+1\right)\left(a+b+c+a^2+b^2+c^2\right)\)

    \(=3\left(a+b+c+a^2+b^2+c^2\right)\)\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\right)\)

      \(=3\left(1+\sqrt{3}\right)\)

\(\Rightarrow P\le\sqrt{3\left(1+\sqrt{3}\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)