K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2021
Bạn tham khảo!

Bài tập Tất cả

Bài tập Tất cả

NM
16 tháng 12 2020

mình hoàn thiện nốt bài bạn ở trên nhé

Do \(x^2+xu+u^2\)là một bình phương thiếu nên \(x^2+xu+u^2\ge0\Rightarrow x^2+xu+u^2+2\ge2>0\text{​​}\)

vậy hệ phương trình ban đầu \(\Leftrightarrow x=u\) hay \(x=\sqrt[3]{2x+1}\Leftrightarrow x^3=2x+1\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)vậy pt có ba nghiệm 

16 tháng 12 2020

Dat u=\(\sqrt[3]{2x-1}\)

ta co he \(\hept{\begin{cases}x^3+1=2u\\u^3+1=2x\end{cases}^{ }}\)(he nay doi xung )

tru ve vs ve ta co:

\(x^3-u^3=2\left(u-x\right)\)

\(\Leftrightarrow\left(x-u\right)\left(x^2+xu+u^2+2\right)=o\)

phan sau tu giai nha muon roi minh buon ngu 

9 tháng 12 2020

15 phút = 1/4 giờ

Đặt quãng đường AB là S ta có

\(\frac{S}{40}-\frac{S}{50}=\frac{1}{4}\Rightarrow S=50\)

Quãng đường AB dài 50km

NM
8 tháng 12 2020

áp dụng công thức diện tích tam giác ta có

\(S=\frac{abc}{4R}=\frac{r\left(a+b+c\right)}{2}\Rightarrow\frac{3}{2Rr}=\frac{3\left(a+b+c\right)}{abc}\)

vì vậy ta cần chứng minh 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\sqrt{\frac{3\left(a+b+c\right)}{abc}}=\sqrt{3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)}\)

bình phương hai vế ta có: 

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{c}-\frac{1}{b}\right)^2+\left(\frac{1}{a}-\frac{1}{c}\right)^2\ge0\)luôn đúng

dấu bằng xảy ra khi a=b=c

2 tháng 1 2021
Bạn tham khảo

Bài tập Tất cả