Trong mặt phẳng tọa độ Oxy cho parabol (P): y=-x2, đường thẳng (d): y=2x-m2+1. Tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt D,E sao cho khoảng cách từ D đến trục Oy bằng khoảng cách từ E đến trục Oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bất đẳng thức cần chứng minh tương đương với: \(\frac{16a}{b^3+16}+\frac{16b}{c^3+16}+\frac{16c}{a^3+16}\ge\frac{8}{3}\)
Ta có: \(\frac{16a}{b^3+16}=a-\frac{ab^3}{b^3+16}=a-\frac{ab^3}{b^3+8+8}\ge a-\frac{ab^3}{3\sqrt[3]{b^3.8.8}}=a-\frac{ab^2}{12}\)
Tương tự rồi cộng từng vế 3 bất đẳng thức đó, ta được: \(\frac{16a}{b^3+16}+\frac{16b}{c^3+16}+\frac{16c}{a^3+16}\ge3-\frac{ab^2+bc^2+ca^2}{12}\)
Ta cần chứng minh \(ab^2+bc^2+ca^2\le4\)
Thật vậy: Giả sử \(b=mid\left\{a,b,c\right\}\)thì \(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2+ac\le ab+bc\)
\(\Leftrightarrow ab^2+ca^2\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+bc^2+abc\)\(\le a^2b+bc^2+2abc=b\left(a+c\right)^2=\frac{1}{2}.2b.\left(a+c\right)\left(a+c\right)\le\frac{1}{2}.\frac{8\left(a+b+c\right)^3}{27}=4\)
Đẳng thức xảy ra khi a = 0; b = 1; c = 2 và các hoán vị


\(ĐK:x,y,z\ne0\)
Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)
\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0
Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)
Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)
Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).

Đt qua M(3;2) có dạng y=ax+2-3a
khi x=1 thì y=2-2a. Để y nguyên dương thì có vô số giá trị a
KL: có vô số Đt thỏa mãn

Giả sử \(c=min\left\{a,b,c\right\}\)
Khi đó ta được: \(ab+bc+ca\ge ab;\frac{1}{\left(b-c\right)^2}\ge\frac{1}{b^2};\frac{1}{\left(c-a\right)^2}\ge\frac{1}{a^2}\)
Do đó ta cần chứng minh \(ab\left(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\)hay \(\frac{ab}{\left(a-b\right)^2}+\frac{\left(a-b\right)^2}{ab}\ge2\)*đúng theo bất đẳng thức Cô - si*
Đẳng thức xảy ra khi \(a^2+b^2=3ab,c=0\)
Giả sử c = min(a,b,c), khi đó ab+bc+ca>=ab; 1/(b-c)^2>=1/b^2; 1/(c-a)^2>=1/a^2. Ta cần chứng minh: ab(1/(a-b)^2 +1/b^2 + 1/a^2 )>=4. Bằng cách biến đổi tương đương ta được: [ab/(a-b)^2 +a/b + b/a]>=4 <=> ab/(a-b)^2 +a/b+b/a-4>=0 <=>ab/(a-b)^2 + (a^2+b^2-4ab)/ab>=0 <=> ab/(a-b)^2 +[(a-b)^2-2ab]/ab>=0 <=> ab/(a-b)^2 +(a-b)^2/ab - 2 >=0 (1).
Đặt k = ab/(a-b)^2>=0 => (a-b)^2 = 1/k >0.
Áp dụng BĐT Cosi cho k và 1/k => k+1/k >=2 căn(k.1/k)=2 => k+1/k-2>=0 => (1) đã được chứng minh.
Vậy (ab+bc+ca)[1/(a-b)^2 + 1/(b-c)^2 + 1/(c-a)^2]>=4.
Dấu bằng xảy ra khi c = 0 và k=1/k => k^2=1 => a^2b^2=(a-b)^4 => (a-b)^2=ab => a^2+b^2-2ab=ab => a^2-3ab+b^2 = 0. Xem đây là PT bậc hai theo a với hệ số theo b. Lập Delta = 9b^2-4b^2 = 5b^2 => a = (3b+bcăn 5)/2 hoặc a = (3b-bcăn 5)/2.

Mik sửa đề xíu ạ:
a) \(\left(\frac{a+b}{a-b}+1\right)\left(\frac{b+c}{b-c}+1\right)\left(\frac{c+a}{c-a}+1\right)\)= \(\left(\frac{a+b}{a-b}-1\right)\left(\frac{b+c}{b-c}-1\right)\left(\frac{c+a}{c-a}-1\right)\)
Đặt \(\frac{a+b}{a-b}=x;\frac{b+c}{b-c}=y;\frac{c+a}{c-a}=z\)thì \(xy+yz+zx=\frac{\left(a+b\right)\left(b+c\right)\left(c-a\right)+\left(b+c\right)\left(c+a\right)\left(a-b\right)+\left(c+a\right)\left(a+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)và ta cần chứng minh \(x^2+y^2+z^2\ge2\)
Thật vậy, ta có: \(\left(x+y+z\right)^2\ge0\forall x,y,z\Rightarrow x^2+y^2+x^2\ge-2\left(xy+yz+zx\right)=2\)
Đẳng thức xảy ra khi \(\frac{a+b}{a-b}+\frac{b+c}{b-c}+\frac{c+a}{c-a}=0\)
Chú ý: Bài này có thể biến thành bài toán sau:
Cho a,b,c là các số thực khác nhau từng đôi một. Chứng minh rằng: \(\frac{a^2+b^2}{\left(a-b\right)^2}+\frac{b^2+c^2}{\left(b-c\right)^2}+\frac{c^2+a^2}{\left(c-a\right)^2}\ge\frac{5}{2}\)
Phương trình hoành độ giao điểm của (P) và (d):
x2 + 2x -m2 + 1 = 0
Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0
Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)m \(\in\varnothing\)