Viết bài văn thuyết minh cho 3 đề sau:
Thuyết minh về cây lúa nước
Thuyết minh về cây sen
Thuyết minh về cây nhãn lồng Hưng Yên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
Xét tam giác \(ABC\)vuông tại \(A\): \(AB^2=HB.BC\Rightarrow HB=\frac{AB^2}{BC}\).
\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}\)
Suy ra \(\frac{HB}{HC}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2=\frac{9}{25}\)
Bài này dễ mà bn lớp 5 còn làm đc :) e xin lỗi tí chứ e hc bài này òi :)
Vì khúc gỗ trôi tự do với vận tốc dòng nưosc là 2 giờ 15 phút
Ta có :
=>gọi x là v thật của cano như vậy ta có: (x#0) thì vận tốc cano lúc đi là sẽ là x+4va v sẽ là x - 4
T/g canô là (x#0) 40 /(x#4)
T/g cano AB là: 10/(x#)
Ta có p.t:
40/(x+10) + 2,25 = 32,25 (km)
Chú ý đổi xong òi đó 2 giờ 15 phút
Đ.s:....................
>3
1)
\(y=x-\sqrt{x-1991}=\left(\sqrt{x-1991}-\frac{1}{2}\right)^2+\frac{7963}{4}\ge\frac{7963}{4}\)
Dấu "=" xảy ra khi \(x=\frac{7965}{4}\)
2)
\(T=\frac{2a^2+4ab+5b^2}{a^2+b^2}=\frac{\left(a+2b\right)^2}{a^2+b^2}+1\ge1\)
Dấu "=" xảy ra khi a=-2b
\(T=\frac{2a^2+4ab+5b^2}{a^2+b^2}=-\frac{\left(2a-b\right)^2}{a^2+b^2}+6\le6\)
Dấu "=" xảy ra khi 2a=b
từ giả thiết \(\Rightarrow3xy=x+y+1\)
áp dụng bất đẳng thức Bunia ta có
\(3x^2+1\ge\frac{\left(3x+1\right)^2}{4}\Rightarrow\sqrt{3x^2+1}\ge\frac{\left(3x+1\right)}{2}\)
tương tự \(\Rightarrow\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le\frac{2}{3x+1}+\frac{2}{3y+1}\)
Mà \(\frac{2}{3x+1}+\frac{2}{3y+1}=\frac{6x+6y+4}{9xy+3x+3y+1}=\frac{6x+6y+4}{6x+6y+4}=1\)(Thế \(3xy=x+y+1\))
từ đây ta có dpcm
Ta có: \(\left(x+1\right)\left(y+1\right)=4xy\Rightarrow xy+x+y+1=4xy\Rightarrow3xy=x+y+1\)
Xét bất đẳng thức phụ \(3x^2+1\ge\frac{\left(3x+1\right)^2}{4}\)(*)
Thật vậy: (*)\(\Leftrightarrow12x^2+4-9x^2-6x-1\ge0\Leftrightarrow3x^2-6x+3\ge0\Leftrightarrow3\left(x-1\right)^2\ge0\)*đúng*
Do đó \(\sqrt{3x^2+1}\ge\frac{3x+1}{2}\Rightarrow\frac{1}{\sqrt{3x^2+1}}\le\frac{2}{3x+1}\)(1)
Tương tự, ta có: \(\frac{1}{\sqrt{3y^2+1}}\le\frac{2}{3y+1}\)(2)
Cộng theo vế hai bất đẳng thức (1) và (2), ta được: \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le\frac{2}{3x+1}+\frac{2}{3y+1}=\frac{6x+6y+4}{9xy+3x+3y+1}=\frac{6x+6y+4}{3\left(x+y+1\right)+3x+3y+1}=\frac{6x+6y+4}{6x+6y+4}=1\)Đẳng thức xảy ra khi x = y = 1
Bài 1
Từ giả thiết, bình phương 2 vế, ta được:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)
\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)
\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)
\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)
\(=2014\)
\(\Rightarrow A=\sqrt{2014}.\)
Bài 2:
Đặt \(\sqrt{2015}=a>0\)
\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)
Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)
\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)
\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)
Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)
Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)
Bài 3
Áp dụng bất đẳng thức Côsi
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)
Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)
ĐKXĐ : \(x\ge0;x\ne1\)
a ) \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{2\sqrt{x}}\)
\(A=\frac{1+\sqrt{x}+1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}:\frac{1+\sqrt{x}-1+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{1}{2\sqrt{x}}\)
\(A=\frac{2}{2\sqrt{x}}+\frac{1}{2\sqrt{x}}=\frac{3}{2\sqrt{x}}\)
b) \(x=6-2\sqrt{5}\Leftrightarrow x=5-2\sqrt{5}+1\Leftrightarrow x=\left(\sqrt{5}-1\right)^2\) ( Thỏa mãn ĐKXĐ )
Vậy tại \(x=\left(\sqrt{5}-1\right)^2\)thì giá trị biểu thức A là :
\(A=\frac{3}{2\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{3}{2\left(\sqrt{5}-1\right)}=\frac{3\left(\sqrt{5}+1\right)}{2.4}=\frac{3\sqrt{5}+3}{8}\)
a) \(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{\left(\sqrt{a}+3\right)\left(-a+4\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(-a+4\right)\left(\sqrt{a}+2\right)}-\frac{\left(\sqrt{a}-1\right)\left(-a+4\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(-a+4\right)\left(\sqrt{a}-2\right)}+\frac{\left(4\sqrt{a}-4\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(4-a\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{-4a\sqrt{a}-8a+16\sqrt{a}+32}{\left(-a+4\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{4\left(2+\sqrt{a}\right)\left(-a+4\right)}{\left(-a+4\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{4\left(\sqrt{a}+2\right)}{a-4}\)
b) Với a = 9 thì
\(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{\sqrt{9}+3}{\sqrt{9}-2}-\frac{\sqrt{9}-1}{\sqrt{9}+2}+\frac{4\sqrt{9}-4}{4-9}\)
\(=\frac{3+3}{3-2}-\frac{3-1}{3+2}+\frac{4\cdot3-4}{-5}\)
\(=6-\frac{2}{5}+\frac{12-4}{-5}\)
\(=6-\frac{2}{5}+\frac{8}{-5}\)
\(=6-\frac{2}{5}+\frac{-8}{5}\)
\(=\frac{30}{5}-\frac{2}{5}-\frac{8}{5}\)
\(=\frac{20}{5}=4\)