Tìm cặp sô nguyên (x,y) thỏa mãn : x3-2x2+3x=y3+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Sửa
Traditional psychiatric tests are divided into two categories. Performance tests are designed to measure skills and knowledge acquired, especially those that are clearly taught. The proficiency tests some states take to graduate from high school are tests of achievement. The aptitude tests are designed and measure a person's ability to acquire new skills but knowledge. For example, career aptitude tests can help you discern whether you'll do better as a mechanic or a musician. However, all of the mental tests are in some sensory achievement tests because they assume some kind of past learning or experience with certain objects, words or situations. The difference between a test of achievement and an aptitude is the intended use of the degree.
mk sửa lại
Traditional psychiatric tests are divided into two categories. Performance tests are designed to measure skills and knowledge acquired, especially those that are clearly taught. The proficiency tests some states take to graduate from high school are tests of achievement. The aptitude tests are designed and measure a person's ability to acquire new skills but knowledge. For example, career aptitude tests can help you discern whether you'll do better as a mechanic or a musician. However, all of the mental tests are in some sensory achievement tests because they assume some kind of past learning or experience with certain objects, words or situations. The difference between a test of achievement and an aptitude is the intended use of the degree.

mình mới học lớp 7 nhưng chỉ biết câu a sai thì thôi nhé ac=ad vì cái kia = cái này mà cái này = cái kia bạn chỉ cần nói với cô như vậy.Thôi nha
a/ Gọi E, F lần lược là trung điểm của AD, AC
\(\Rightarrow AI\)là đường trung bình của hình thang \(OFEO'\)
\(\Rightarrow AE=AF\)
\(\Rightarrow AD=AC\)
b/ Gọi G là giao điểm của AB với OO'
\(\Rightarrow IG\)là đường trung bình của \(\Delta ABK\)
\(\Rightarrow\)IG // BK
Mà \(IG⊥AB\)
\(\Rightarrow BK⊥AB\)
PS: Bạn vẽ hộ cái hình nhé

Ta có:
\(3^{4n+1}=3.81^n\text{≡}3\left(mod10\right)\)
\(\Rightarrow3^{4n+1}=10k+3\)
\(\Rightarrow2^{3^{4n+1}}=2^{10k+3}=8.1024^k\text{≡}8\left(mod11\right)\left(1\right)\)
Ta lại có:
\(2^{4n+1}=2.16^n\text{≡}2\left(mod5\right)\)
\(\Rightarrow2^{4n+1}=5a+2\)
\(\Rightarrow3^{2^{4n+1}}=3^{5a+2}=9.243^a\text{≡}9\left(mod11\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}+5\text{≡}9+8+5\text{≡}22\text{≡}0\left(mod11\right)\)

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

Kẽ phân giác AD của tam giác ABC, \(AD=l\)
Ta có:
\(S_{ABC}=S_{ABD}+S_{ACD}=\frac{c.l.sin\frac{A}{2}}{2}+\frac{b.l.sin\frac{A}{2}}{2}=\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\left(1\right)\)
Ta lại có:
\(\frac{a.l}{2}\ge\frac{a.h_a}{2}=S_{ABC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a.l}{2}\ge\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\)
\(\Leftrightarrow sin\frac{A}{2}\le\frac{a}{b+c}\le\frac{a}{2\sqrt{bc}}\)

20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10
<=> 2/3 < 1/a + 1/b + 1/c < 7/10
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau :
a) A = 2
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại)
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41}
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại)
b) A = 3
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại)
c) A >= 5
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại)
Tóm lại có các TH sau
A = 2, B = 7, C = 19
A = 2, B = 7, C = 23
A = 2, B = 7, C = 29
A = 2, B = 7, C = 31
A = 2, B = 7, C = 37
A = 2, B = 7, C = 41
A = 2, B = 11, C = 13
A = 3, B = 5, C = 7
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2)
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn điều kiện đầu bài .
Ta có
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
\(\Leftrightarrow\frac{2}{3}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{7}{10}\)
Không mất tính tổng quát ta giả sử \(a< b< c\)
\(\Rightarrow\frac{2}{3}< \frac{3}{a}\Rightarrow a=\left(2,3\right)\)(vì a nguyên tố)
Thế lần lược các giá trị a vào rồi làm tương tự như bước trên sẽ tìm được b, c (nhớ loại giá trị không đúng nhé)
Vai trò a, b, c là như nhau nên các giá trị a, b, c có thể đổi vị trí cho nhau nên chú ý để không bỏ xót nghiệm nhé

ahihi cái này chị ra rồi nhé , ohân tích đa thức thành nhân tử tìm quan hệ nhé, tối rồi lười viết lắm
\(x^3-2x^2+3x=y^3+1\Leftrightarrow x^3-2x^2+3x-1=y^3\)
Ta có: \(y^3-\left(x+1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3+3x^2+3x+1\right)=-5x^2-2< 0\Rightarrow y^3< \left(x+1\right)^3\Rightarrow y< x+1\)(1)
\(y^3-\left(x-1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3-3x^2+3x-1\right)=x^2\ge0\Rightarrow y^3\ge\left(x-1\right)^3\Rightarrow y\ge x-1\)(2)
Từ (1) và (2) suy ra \(x-1\le y< x+1\Rightarrow\orbr{\begin{cases}y=x-1\\y=x\end{cases}}\)(do x, y nguyên)
Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x;y\right)\in\left\{\left(0;-1\right);\left(1;1\right)\right\}\)