K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{ca^2}{c^2+a^2}\)

\(\ge a-\frac{ab^2}{2ab}+b-\frac{bc^2}{2bc}+c-\frac{ca^2}{2ca}=a-\frac{b}{2}+b-\frac{c}{2}+c-\frac{a}{2}=\frac{a+b+c}{2}\)

10 tháng 8 2017

Ê, thế bài 3 BVN làm thế nào

22 tháng 10 2017

\(\Leftrightarrow x^2-1+2\sqrt{x}.\sqrt{x^2-1}-3x=0\)

đặt \(\sqrt{x^2-1}=a;\sqrt{x}=b\)

=>a2+2ab-3b2=0

đến đây dễ rồi

30 tháng 4 2020

Điều kiện -1 =<x<0

Chia cả 2 vế cho x ta nhận được \(x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}\)

Đặt t=\(x-\frac{1}{x}\)ta giải được

11 tháng 9 2017

b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)

\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)

\(\Leftrightarrow\sqrt{x+1}.-13=0\)

\(\Leftrightarrow x=-1\)

21 tháng 10 2020

helpppppppp

19 tháng 11 2016

- Nếu có 2 dấu căn: \(K=\sqrt{5+\sqrt{13}}\approx2,9335\)                có 1 chữ số 9 đầu tiên ở phần thập phân (1)

- Nếu có 3 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5}}}\approx2,9838\)(1)

- Nếu có 4 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13}}}}\approx2,9986\) (2)

- Nếu có 5 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5}}}}}\approx2,99966\)(3)

- Nếu có 6 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13}}}}}}\approx2,999971\)(4)

...

Vậy nếu có n (n là số tự nhiên lớn hơn 2) dấu căn thì \(K\approx2,99...9\)(n - 2 chữ số 9).

19 tháng 11 2016

ĐK x> \(\sqrt{5+\sqrt{13}}\)

bình phương 2 vế ta được \(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+....}}}\)

bình phương 2 vế ta được \(x^4=25+13+\sqrt{5+\sqrt{13+...}}+10\sqrt{13+\sqrt{5+\sqrt{13...}}}\)

đặt x=\(\sqrt{5+\sqrt{13+...}}\)

=> \(x^4=25+13+x+10\sqrt{13+x}\)

=> \(x^4=38+x+10\sqrt{13+x}\)

giai pt => x=3 (nhận) 

vậy K=3

19 tháng 10 2020

Áp dụng BĐT AM - GM, ta có: \(a\sqrt{b-1}+b\sqrt{a-1}=a\sqrt{\left(b-1\right).1}+b.\sqrt{\left(a-1\right).1}\le a.\frac{b}{2}+b.\frac{a}{2}=ab\)

Đẳng thức xảy ra khi a = b = 2

20 tháng 10 2020

bạn ơi có nhầm lẫn j ko bạn

đề là C/M a\(\sqrt{b+1}\)+ b\(\sqrt{a-1}\)<= ab mà

sao bạn làm là a\(\sqrt{b-1}\)+ b\(\sqrt{a-1}\)

24 tháng 10 2016

Vì 105 là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|}+x^2+x+y\) phải là các số lẻ.

Từ \(2x+5y+1\) là số lẻ mà \(2x+1\) là số lẻ nên 5y là số chẵn suy ra y là số chẵn.

\(2^{\left|x\right|}+x^2+x+y\) là số lẻ mà \(x^2+x=x\left(x+1\right)\) là tích của hai số nguyên liên tiếp nên là số chẵn, y cũng là số chẵn nên \(2^{\left|x\right|}\) là số lẻ. Điều này chỉ xảy ra khi \(x=0\)

Thay x=0 vào phương trình đã cho, ta được:

\(\left(5y+1\right)\left(y+1\right)=105\)

\(\Leftrightarrow5y^2+6y-104=0\)

\(\Leftrightarrow5y^2-20y+26y-104=0\) 

\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)

\(\Leftrightarrow\left(5y+26\right)\left(y-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=-\frac{26}{5}\left(\text{loại}\right)\\y=4\left(TM\right)\end{cases}}\)

Vậy phương trình có nghiệm nguyên \(\left(x;y\right)=\left(0;4\right)\)

24 tháng 10 2016

Chứng minh rằng không tồn tại số nguyên n thỏa mãn $2014^{2014}+1\vdots n^{3}+2012n$ - Số học - Diễn đàn Toán học

12 tháng 10 2017

Ta có: 

\(\frac{1}{2x+y+z}=\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(1\right)\)

Tương tự ta có: 

\(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\Rightarrow M\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{16}.4.4=1\)

12 tháng 10 2017

Để đơn giản bài toán thì ta xét trường hợp cá biệt. \(x=y\) thì đề ban đầu trở thành.

\(x,z>0,\frac{2}{x}+\frac{1}{z}=4\)

Đễ thấy \(\frac{1}{z}< 4\)

\(\Leftrightarrow z>0,25\)

Với \(z\) càng gần bằng 0,25 thì \(\frac{1}{z}\)càng gần với 4

\(\Rightarrow\frac{2}{x}=4-\frac{1}{z}\) càng gần = 0 

\(\Rightarrow x\)càng lớn

\(\Rightarrow M\) càng bé nhưng giá trị chỉ dần về 0 chứ không thể bằng 0 được. 

Vậy đề trên là sai. 

19 tháng 10 2017

ghép lại rồi dùng hđt thứ 3 thôi bạn

25 tháng 5 2018

Bạn làm rõ ra được không.?

14 tháng 10 2020

kkkkkkkkkkk

14 tháng 10 2020

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk