K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

21 tháng 9 2019

dễ vậy còn hỏi

7 tháng 1 2017

\(\frac{5\left(a-b\sqrt{2}\right)-4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\)

\(\left(a-9b\sqrt{2}\right)+\left(a^2-2b^2\right)18\sqrt{2}=3\left(a^2-2b\right)\)

\(\sqrt{2}\left[18\left(a^2-2b^2\right)-9b\right]+a=3\left(a^2-2b\right)\)

\(\sqrt{2}\)là số vô tỷ=> \(\hept{\begin{cases}2a^2-4b^2-b=0\\3a^2-6b-a=0\end{cases}\Leftrightarrow}\) (giải hệ này ra a,b)

20 tháng 1 2020

Ta có: \(x^2+4y=8\)

<=> \(y=\frac{8-x^2}{4}\)

\(P=x+y+\frac{9}{x+y}+\frac{1}{x+y}\)

\(=\left(x+y+\frac{9}{x+y}\right)+\frac{1}{x+\frac{8-x^2}{4}}\)

\(\ge2\sqrt{\left(x+y\right).\frac{9}{x+y}}+\frac{4}{-x^2+4x+8}\)

\(=2.3+\frac{4}{-\left(x^2-4x+4\right)+12}=6+\frac{4}{-\left(x-2\right)^2+12}\)

\(\ge6+\frac{4}{12}=\frac{19}{3}\)

Dấu "=" xảy ra <=> x = 2; y =1

12 tháng 10 2020

b dễ làm trước,a ko biết làm   ):

b)\(\sqrt{2+\sqrt{x}}=3\)

ĐK : \(\sqrt{x}=7\)

\(x=49\)

\(\sqrt{2+\sqrt{49}}=3\Rightarrow\sqrt{2+7}=3\Leftrightarrow\sqrt{9}=3\Rightarrow3=3\)

12 tháng 10 2020

\(\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)

<=> \(\sqrt{\left(\frac{1}{2}x\right)^2+2\cdot\frac{1}{2}x\cdot1+1^2}-\sqrt{5-2\sqrt{5}+1}=0\)

<=> \(\sqrt{\left(\frac{1}{2}x+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)

<=> \(\left|\frac{1}{2}x+1\right|-\left|\sqrt{5}-1\right|=0\)

<=> \(\left|\frac{1}{2}x+1\right|-\left(\sqrt{5}-1\right)=0\)

<=> \(\left|\frac{1}{2}x+1\right|=\sqrt{5}-1\)

<=> \(\orbr{\begin{cases}\frac{1}{2}x+1=\sqrt{5}-1\\\frac{1}{2}x+1=1-\sqrt{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4+2\sqrt{5}\\x=-2\sqrt{5}\end{cases}}\)

b) \(\sqrt{2+\sqrt{x}}=3\)

ĐK : x ≥ 0

Bình phương hai vế

pt <=> \(2+\sqrt{x}=9\)

    <=> \(\sqrt{x}=7\)

    <=> \(x=49\left(tm\right)\)

4 tháng 6 2020

Vì abc = 1 nên ta có thể đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). Khi đó: 

\(VT=\Sigma_{cyc}\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}=\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\)

\(\Rightarrow VT^2\le\left(1+1+1\right)\left(\Sigma_{cyc}\frac{yz}{xy+xz+2yz}\right)\left(\text{ }\right)\)(Theo BĐT Cauchy-Schwarz)

\(\le\frac{3}{4}\left[\Sigma_{cyc}yz\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)\right]=\frac{3}{4}\left(\Sigma_{cyc}\frac{xy+yz}{xy+yz}\right)=\frac{9}{4}\)

\(\Rightarrow VT\le\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z hay a = b = c = 1

13 tháng 10 2020

Sử dụng AM-GM:

\(\Sigma\frac{\sqrt{ab}}{a+b+2c}=\Sigma\frac{\sqrt{ab}}{a+c+b+c}\le\frac{1}{2}\Sigma\frac{\sqrt{ab}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{4}\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)=\frac{3}{4}\)

Đẳng thức xảy ra tại a=b=c

21 tháng 7 2018

\(xy+\sqrt{\left(1+y^2\right)\left(1+x^2\right)}=1\)

\(\Leftrightarrow\sqrt{\left(1+y^2\right)\left(1+x^2\right)}=1-xy\)

\(\Leftrightarrow\left(1+y^2\right)\left(1+x^2\right)=1+x^2y^2-2xy\)

\(\Leftrightarrow1+x^2+y^2+x^2y^2=1+x^2y^2-2xy\)

\(\Leftrightarrow x^2+y^2=-2xy\)

\(\Leftrightarrow x^2+y^2+2xy=0\)

\(\Leftrightarrow\left(x+y\right)^2=0\)

\(\Leftrightarrow x=-y\)

Thay vào ,ta có

\(x\sqrt{1+y^2}+y\sqrt{1+x^2}=-y\sqrt{1+x^2}+y\sqrt{1+x^2}=0\)(đpcm)

đây là cách của mk

@-@

18 tháng 7 2018

Ta có \(1=\left(xy+\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\right)^2\)

\(=x^2y^2+\left(1+y^2\right)\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)

\(=x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)

\(=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}+1\)

\(\Leftrightarrow x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}=0\)

\(\Leftrightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=0\)

\(\Rightarrow x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)