Cho hệ phương trình
\(\hept{\begin{cases}x^2+y^2=9\\\left(2m+1\right)x+my+m-1=0\end{cases}}\)
Xác định m để hệ phương trình có hai nghiệm ( x1 ; y1 ) , ( x2 ; y2 ) sao cho biểu thức
A = ( x1 - x2 )2 + ( y1 - y2 )2 đạt GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...>\frac{1}{\sqrt{n}}\)nên \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)>\(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)=\(\frac{n}{\sqrt{n}}=\sqrt{n}\)
với mọi k thuộc N ta luôn có
\(\frac{1}{\sqrt{k}}=\frac{2}{\sqrt{k}+\sqrt{k}}< \frac{2}{\sqrt{k}+\sqrt{k-1}}\)=\(\frac{2\left(\sqrt{k}-\sqrt{k-1}\right)}{k-k+1}=2\left(\sqrt{k}-\sqrt{k-1}\right)\)
áp dụng tính chất này ta có
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)<2(\(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}\)+...+\(\sqrt{n}-\sqrt{n-1}\))=\(2\left(\sqrt{n}-\sqrt{0}\right)=2\sqrt{n}\)
a) \(\sqrt{x^2}=7\)
\(\Leftrightarrow\left|x\right|=7\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
b) \(\sqrt{\left(x-2020\right)^2}=10\)
\(\Leftrightarrow\left|x-2020\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)
c) đk: \(x\ge2\)
\(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)
\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)
\(\Leftrightarrow12\sqrt{x-2}=x+4\)
\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow x^2-136x+304=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)
d) đk: \(x\ge-1\)
\(\sqrt{25x+25}-2\sqrt{64x+64}=7\)
\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)
\(\Leftrightarrow-11\sqrt{x+1}=7\)
Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)
=> pt vô nghiệm
Vì n là số nguyên dương nên \(n^2+n+3>3\). Gọi r là số dư khi chia n cho 3, \(r\in\left\{0,1,2\right\}\). Nếu r=0 hoặc r=2 thì \(n^2+n+3⋮3\)
Mẫu thuẫn với giả thiết \(n^2+n+3\)là số nguyên tố. Do đó r=1 hay n chia 3 dư 1. Khi đó \(7n^2+6n+2017\)chia 3 dư 2. Mà 1 số chính phương có số dư khi chia cho 3 là 0 hoặc 1 nên => đpcm
Ta có \(n\inℕ^∗\Rightarrow n\equiv0;1;2\left(mod3\right)\left(1\right)\)
Nếu \(n\equiv0\left(mod3\right)\Rightarrow n^2+n+3\equiv0\left(mod3\right)\) mà \(n^2+n+3>3\forall n\inℕ^∗\)
=> \(n^2+n+3\) là hợp số ( mâu thuẫn )
=> \(n\equiv0\left(mod3\right)\) (loại) (2)
Nếu \(n\equiv2\left(mod3\right)\Rightarrow n^2+n+3\equiv9\equiv0\left(mod3\right)\) mà \(n^2+n+3>3\forall n\inℕ^∗\)
=> \(n^2+n+3\) là hợp số ( mâu thuẫn )
=> \(n\equiv2\left(mod3\right)\)( loại) (3)
Từ (1);(2);(3) => \(n\equiv1\left(mod3\right)\)
Hay n chia 3 dư 1
Với \(n\equiv1\left(mod3\right)\) ta có
\(7n^2+6n+2017\equiv2030\equiv2\left(mod3\right)\)
=> \(7n^2+6n+2017\) chia 3 dư 2
Lại có : Một số chính phương bất kì khi chia cho 3 dư 0 hoặc dư 1 (5)
Từ (4);(5) => \(7n^2+6n+2017\) không phải là số chính phương (đpcm)
:v kí hiệu vậy ai biết ở đâu
coi b là cạnh huyền nhé!
Áp dụng Pythagoras cho b = căn 61
Dùng sin cos .-.
Ta có: \(\frac{a^2+b^2}{a-b}\)= \(\frac{a^2-2ab+b^2+2ab}{a-b}\)= \(\frac{\left(a-b\right)^2+2ab}{a-b}\)= (a -b) + \(\frac{2ab}{a-b}\)
Vì a>b>0 nên áp dụng BĐT Cô-Si cho 2 số không âm ta có :
(a - b) +\(\frac{2ab}{a-b}\)\(\ge\)\(2\sqrt{\left(a-b\right)\cdot\frac{2ab}{a-b}}\)= 2\(\sqrt{2ab}\)= \(2\sqrt{2}\)( Vì ab = 1) ( đpcm)
\(C=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x-\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\) (tự tìm ĐKXĐ)
\(=\frac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}-1\right)+2\left(\sqrt{x}+1\right)\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}+1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+3\)
GTNN:\(x-\sqrt{x}+3=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
\(\Rightarrow Min\left(C\right)=\frac{11}{4}khi..\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
1. Will you be met at the airport, Tom?
2. Was that report written by Aland?
3. Has the room been cleaned anymore yet?
4. Can English be spoken in the class?
5. What will be done by them by the end of the year?
6. Can't this dress be washed?
7. I wasn't told the truth.
8. Will their children be brought home by bus?
9. Why wasn't he helped by them?
10. The emails are opened by the secretary every day.
11. I am not allowed to take a seat by the window by the teacher.
12. Tom's mother was made worried about his absence.
13. A new school is being built in this town.
14. The report should be finished right now.
15. The matter will be discussed in the afternoon. ( Mình thay "shall" thành "will" vì "shall" chỉ dùng cho "I" và "we")
Phương trình (2) là phương trình đường thẳng \(\Delta:\left(2m+1\right)x+my+m-1=0\)
Phương trình (1) có dạng phương trình đường tròn: \(\left(C\right):x^2+y^2=9\)có tâm là \(O\left(0,0\right)\)và bán kính R=3
Hệ có hai nghiệm \(\left(x_1;y_1\right),\left(x_2;y_2\right)\)\(\Leftrightarrow\)đường thẳng \(\Delta\)cắt \(\left(C\right)\)tại 2 điểm \(M\left(x_1;y_1\right),N\left(x_2;y_2\right)\). Khi đó \(MN=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)\(\Leftrightarrow A=MN^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)
Biểu thức A đạt GTLN khi \(\Delta\)đi qua tâm O của đường tròn, tức là: \(\Delta:\left(2m+1\right).0+m.0+m-1=0\Leftrightarrow m=1\)