Cho a,b,c là 3 số thực dương thỏa mãn điều kiện a+b+b=3. Tìm giá trị nhỏ nhất của \(P=\sqrt{\frac{a+b}{c+ab}}+\sqrt{\frac{b+c}{a+bc}}+\sqrt{\frac{c+a}{b+ca}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Theo giả thiết ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{z}\Leftrightarrow xz+yz=xy\)
\(\Leftrightarrow xy-xz-yz=0\Leftrightarrow x^2+y^2+z^2+xy-xz-yz=x^2+y^2+z^2\)
\(\Leftrightarrow\left(x+y-z\right)^2=x^2+y^2+z^2\)
\(\Leftrightarrow\sqrt{x^2+y^2+z^2}=\left|x+y-z\right|\)
Mà x, y, z là các số hữu tỉ nên \(\left|x+y-z\right|\)là số hữu tỉ
Vậy \(\sqrt{x^2+y^2+z^2}\)là số hữu tỉ (đpcm)


hải anh giải phương trình 2 nhé
Điều kiện xác định \(x\ge1\)
\(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow3\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow\left(x+\sqrt{x-1}\right)\left(3x-3\sqrt{x-1}-x-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow2\left(x+\sqrt{x-1}\right)\left(x-2\sqrt{x-1}\right)=0\)(vì x\(\ge\)1 nên \(x+\sqrt{x-1}\ne0\))
\(\Leftrightarrow x-1-2\sqrt{x-1}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x=2\)(thỏa mãn điều kiện xác định)
Vậy phương trình có nghiệm x=2


Làm đi làm lại nhiều rồi chán không muốn viết nữa vô TKHĐ xem hình ảnh