K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

ĐKXĐ : \(x\ge0\)

Đặt \(A=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)

\(=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)

\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)

Áp dụng BĐT AM - GM cho hai số dương ta có :

\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=2\sqrt{2011}\)

Do đó : \(A\ge2\left(\sqrt{2011}-1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2011}\)

Vậy \(A_{min}=2\left(\sqrt{2011}-1\right)\) khi \(x=\frac{1}{2011}\)

25 tháng 8 2020

\(ĐK:x>0\)

Xét biểu thức\(\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}-2\left(\sqrt{2011}-1\right)+2\left(\sqrt{2011}-1\right)\)\(=\frac{2011x-2\sqrt{x}+1-2\sqrt{2011x}+2\sqrt{x}}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\)\(=\frac{\left(\sqrt{2011x}-1\right)^2}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\ge2\left(\sqrt{2011}-1\right)\)

\(\Rightarrow\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\ge2\left(\sqrt{2011}-1\right)\)

Đẳng thức xảy ra khi \(\sqrt{2011x}=1\Leftrightarrow2011x=1\Leftrightarrow x=\frac{1}{2011}\)

Vậy giá trị nhỏ nhất của biểu thức là \(2\left(\sqrt{2011}-1\right)\), đạt được khi \(x=\frac{1}{2011}\)

19 tháng 8 2020

Đặt \(a=x^3;b=y^3;c=z^3\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta cần tìm GTLN của \(P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

Áp dụng BĐT AM - GM, ta được: \(x.x.y\le\frac{x^3+x^3+y^3}{3}=\frac{2x^3+y^3}{3}\)(1) ; \(y.y.x\le\frac{y^3+y^3+x^3}{3}=\frac{2y^3+x^3}{3}\)(2)

Cộng theo vế của 2 BĐT (1) và (2), ta được: \(x^2y+xy^2\le x^3+y^3\)hay \(x^3+y^3\ge xy\left(x+y\right)\)

Kết hợp giả thiết xyz = 1 suy ra \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+1}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)

Tương tự, ta có: \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)\(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\)

Cộng theo vế của 3 BĐT trên, ta được: \(P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{x+y+z}{x+y+z}=1\)

Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1

29 tháng 9 2017

Ta có :   \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)

    \(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)

        nhân theo vế của ( 1 ) ; ( 2 ) , ta có :

     \(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)

    \(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)

  rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :

     \(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)

     \(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)

     \(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\) 

       \(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)

  A = 2017 

 ( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :)   )

29 tháng 9 2017

2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)

\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)

\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)

Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)

\(\Leftrightarrow x=2015;y=2016;z=2017\)

21 tháng 10 2016

Có: \(a+b+c+2\sqrt{abc}=1\Rightarrow\hept{\begin{cases}a+2\sqrt{abc}=1-b-c\\b+2\sqrt{abc}=1-a-c\\c+2\sqrt{abc}=1-a-b\end{cases}}\)

\(A=\sqrt{a\left(1-b\right)\left(1-c\right)}+\sqrt{b\left(1-c\right)\left(1-a\right)}+\sqrt{c\left(1-a\right)\left(1-b\right)}-\sqrt{abc}+2015\)

\(A=\sqrt{a\left(1-b-c+bc\right)}+\sqrt{b\left(1-a-c+ac\right)}+\sqrt{c\left(1-a-b+ab\right)}-\sqrt{abc}+2015\)

\(A=\sqrt{a\left(a+2\sqrt{abc}+bc\right)}+\sqrt{b\left(b+2\sqrt{abc}+ac\right)}+\sqrt{c\left(c+2\sqrt{abc}+ab\right)}-\sqrt{abc}+2015\)

\(A=\sqrt{\left(a^2+2a\sqrt{abc}+abc\right)}+\sqrt{\left(b^2+2b\sqrt{abc}+abc\right)}+\sqrt{\left(c^2+2c\sqrt{abc}+abc\right)}-\sqrt{abc}+2015\)

\(A=\sqrt{\left(a+\sqrt{abc}\right)^2}+\sqrt{\left(b+\sqrt{abc}\right)^2}+\sqrt{\left(c+\sqrt{abc}\right)^2}-\sqrt{abc}+2015\)

\(A=a+\sqrt{abc}+b+\sqrt{abc}+c+\sqrt{abc}-\sqrt{abc}+2015\)

\(A=a+b+c+2\sqrt{abc}+2015\)

\(A=1+2015=2016\)

Vậy:....

21 tháng 10 2016
k cho mình mình k lại nhe
19 tháng 10 2017

\(\frac{a^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{\sqrt{ab^2}}{2}=a-\frac{\sqrt{ab.b}}{2}\ge a-\frac{ab+b}{4}\)

CMTT: \(VT\ge2.\left(a+b+c-\frac{a+b+c+ab+cb+ca}{4}\right)\)

Ta lại có \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\le\left(a+b+c\right)\sqrt{3\left(a^2+b^2+c^2\right)}=3\left(a+b+c\right)\)

=> \(ab+bc+ca\le a+b+c\)

=> \(VT\ge2\left(a+b+c-\frac{a+b+c}{2}\right)=a+b+c\left(dpcm\right)\)

Dấu bằng khi a=b=c=1

18 tháng 3 2018

Mình có một cách khác. Các bạn xem nhé!

Đặt a  = b  = c . Ta có:

\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}=3\left(\frac{2a^2}{a^3}\right)\ge a^3\)(Do a = b = c nên ta thế a,b,c = a)

\(\Leftrightarrow\frac{2a^2}{a^3}+\frac{2b^2}{b^3}+\frac{2c^2}{c^3}=\frac{2a^2+2b^2+2c^2}{a^3+b^3+c^3}=\frac{6\left(a^2+b^2+c^2\right)}{\left(a^2.b^2.c^2\right):\left(a+b+c\right)}=\frac{6}{2}=3\)

\(\Rightarrow\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}>a+b+c^{\left(đpcm\right)}\)

Dấu = xảy ra khi a =b = c  = 1

28 tháng 9 2016

xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ


 

28 tháng 9 2016

Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !

21 tháng 8 2020

GTLN chứ ?

\(P\le\frac{1}{9}\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}+\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}+\frac{1}{az}+\frac{1}{bx}+\frac{1}{cy}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

?

21 tháng 8 2020

tìm giá trị nhỏ nhất cơ mà bạn PHÙNG MINH QUÂN ???

20 tháng 8 2020

Áp dụng Bất Đẳng Thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)ta có

\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)

Ta có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)

Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)

Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)

Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)

Vì a,b,c>0 nên 0<abc\(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)

Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)

\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)

Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)

\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)

Dấu "=" xảy ra khi a=b=c=1

14 tháng 8 2016

C B A E D

Ta có : CDEB có góc CEB = góc BDC = 900

=> CDEB là tứ giác nội tiếp => góc AED = góc BCA (góc ngoài tứ giác nội tiếp)

Xét tam giác AED và tam giác ACB có góc A chung, góc AED = góc BCA

=> Tam giác AED đồng dạng với tam giác ACB (g.g)

=> \(\frac{S_{AED}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=cos^2A\)

\(\Rightarrow S_{ADE}=cos^2A\times S_{ABC}\)

Lại có : \(S_{BCDE}+S_{ADE}=S_{ABC}\Rightarrow S_{BCDE}=S_{ABC}-S_{ADE}\)

\(=S_{ABC}-cos^2A\times S_{ABC}\)

\(=S_{ABC}\left(1-cos^2A\right)=sin^2A\times S_{ABC}\)(vì \(sin^2A+cos^2A=1\))

14 tháng 8 2016

Dễ dàng chứng minh \(\Delta ADE\approx\Delta ABC\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)\(\Rightarrow AD.AE=\frac{AB}{AC}.AE^2\Leftrightarrow\frac{1}{2}.AD.AE.\sin EAD=\frac{1}{2}.AB.AC.\cos^2EAD.\sin EAD\)
\(\Rightarrow S_{AED}=S_{ABC}.\cos EAD\)
\(S_{BDEC}=S_{ABC}-S_{AED}=S_{ABC}-S_{ABC}.\cos^2EAD=S_{ABC}\left(1-\cos^2EAD\right)=S_{ABC}.\sin^2EAD\)