Cho x,y,z không âm và (x+z)(y+z) =1
chứng minh: \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(x+z\right)^2}+\frac{1}{\left(y+z\right)^2}\ge4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)
Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)
\(\Rightarrow x\le1-\sqrt{3}\)
Ta có:
\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))
\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)
(Kết hợp với điều kiện ta suy ra)
\(\Leftrightarrow x=-1\)
Ta đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c;\frac{1}{t}=d\) ( a, b, c, d >0 )
Khi đó ta cần chứng minh:
\(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)
\(VT=\frac{a^3}{\frac{b+c+d}{bcd}}+\frac{b^3}{\frac{a+c+d}{acd}}+\frac{c^3}{\frac{a+b+d}{abd}}+\frac{d^3}{\frac{a+b+c}{abc}}\)
\(=\frac{a^3}{\frac{a\left(b+c+d\right)}{abcd}}+\frac{b^3}{\frac{b\left(a+c+d\right)}{abcd}}+\frac{c^3}{\frac{c\left(a+b+d\right)}{abcd}}+\frac{d^3}{\frac{d\left(a+b+c\right)}{abcd}}\)
\(=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{3\left(a+b+c+d\right)}=\frac{a+b+c+d}{3}=VP\)
Vậy ta đã chứng minh được
\(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)
Dấu "=" xảy ra <=> a = b = c = d
Vậy :
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)
Dấu "=" xảy ra <=> x = y = z = t = 1
Từ giả thiết \(1\le a\le2\),suy ra
\(\left(a-1\right)\left(a-2\right)\le0\)
\(\Leftrightarrow a^2-3a+2\le0\)
Tương tự \(b^2-3b+2\le0\)
\(\Rightarrow a^2+b^2-3\left(a+b\right)+4\le0\)
Do đó
\(P=a^2+b^2-3\left(a+b\right)+4-\left(a+\frac{1}{a}\right)-\left(\frac{b}{4}+\frac{1}{b}\right)\)
\(P=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)^2-\left(\frac{\sqrt{b}}{2}-\frac{1}{\sqrt{b}}\right)^2-3\le-3\)
Đẳng thức xảy ra khi\(\hept{\begin{cases}\sqrt{a}=\frac{1}{\sqrt{a}}\\\frac{\sqrt{b}}{2}=\frac{1}{\sqrt{b}}\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}\)
Vậy \(max_P=-3\Leftrightarrow a=1;b=2\)
P/ s : Các bạn tham khảo nha
\(3\left(2a^2+b^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+a^2+b^2\right)\ge\left(a+a+b\right)^2=\left(2a+b\right)^2\)
\(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)
\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(gt\rightarrow7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\)
\(\Leftrightarrow7\left(x+y+z\right)^2=20\left(xy+yz+zx\right)+2015\)
Ta có: \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)
\(\Rightarrow7\left(x+y+z\right)^2\le\frac{20}{3}\left(x+y+z\right)^2+2015\)
\(\Leftrightarrow\frac{1}{3}\left(x+y+z\right)^2\le2015\)
\(\Leftrightarrow x+y+z\le\sqrt{6045}\)
\(P\le\frac{1}{3}\left(x+y+z\right)\le\frac{\sqrt{6045}}{3}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{\sqrt{6045}}{3}\)hay \(a=b=c=\left(\frac{\sqrt{6045}}{3}\right)^{-1}\)
Ta có a3 + b3 +c3 -3abc = (a+b)3 -3ab(a+b) - 3abc + c3
= (a+b+c)[(a+b)2 -c(a+b) +c2 ] -3ab(a+b+c)
= 1/2 (a+b+c)(2a2 +2b2 +2c2 -2ab-2bc-2ac)
= 1/2 (a+b+c) [(a-b)2 +(b-c)2 + (c-a)2 ]
=0 ( vì bài dài nên mk nhắc giải thích bạn tự hiểu nhé)
=> a+b+c=0 hoặc a=b=c
Th1: a+b+c=0 => b-c=-a; c-a=-b; a-b=-c
=> P= 1
Th2 : a=b=c Loại (vì mẫu ko thể bằng không)
Vậy P=1
bài làm còn sơ sài mong bạn thông cảm
Online Math sai rồi nhé.
a + b + c = 0 thì b + c mới là - a
ĐÚng là b - c = -a - 2c
Tương tự với c - a, a - b
Em tính ra , băn khoăn mỗi chỗ đó nên mới không làm được bài toán này.
Nhận thấy A = 3n + 4n +1 chia hết cho 2 với mọi n tự nhiên, để A chia hết cho 10 ta cần A chia hết cho 5 là đủ.
Nhận xét: 34 \(\equiv\)1 (mod 5), ta sẽ xét các trường hợp: n = 4k, n = 4k+1, n = 4k+2, n = 4k+3 với k là số tự nhiên.
TH1: n = 4k.
A = 34k + 4.(4k) + 1 = 81k + 16k +1 \(\equiv\)1 + k + 1 \(\equiv\)2+k (mod 5)
Để A chia hết cho 5 thì k phải có dạng 5h + 3, với h là số tự nhiên. Vậy n = 4.(5h+3) = 20h +12 thì A chia hết cho 10.
Tương tự với các trường hợp sau bạn giải tiếp nhé!
iiiiiiiiiiiiiiiiiiiiirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggffffffffffffffffffffff
Trước tiên chứng minh BĐT \(\frac{x^3+1}{x+2}\ge\frac{7}{18}x^2+\frac{5}{18}\left(x>0\right)\)
\(\Leftrightarrow18\left(x^3+1\right)\ge\left(x+2\right)\left(7x^2+5\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left(11x+8\right)\ge0\)(luôn đúng với x>0)
Dấu "=" xảy ra khi x = 1
Áp dụng công thức trên ta có:
Cho x lần lượt là \(\frac{a}{b};\frac{b}{c};\frac{c}{a}\)
\(\Leftrightarrow\frac{a^3+b^3}{a+2b}\ge\frac{7a^2}{18}+\frac{5b^2}{18};\frac{b^3+c^3}{a+2b}\ge\frac{7b^2}{18}+\frac{5c^2}{18};\frac{c^3+a^3}{a+2b}\ge\frac{7c^2}{18}+\frac{5a^2}{18}\)
Từ đẳng thức trên suy ra \(A\ge\frac{12+\left(a^2+b^2+c^2\right)}{18}=2\)
Vậy MinA=2 khi a=b=c=1
Cần cm: \(\frac{a^3+b^3}{a+2b}\ge\frac{7}{18}a^2+\frac{5}{18}b^2\)
bđt \(\Leftrightarrow\)\(11a^3+8b^3-14a^2b-5ab^2\ge0\)\(\Leftrightarrow\)\(\left(a-b\right)^2\left(11a+8b\right)\ge0\) đúng với a,b>0
\(A\ge\frac{2}{3}\left(a^2+b^2+c^2\right)=2\)
Dấu "=" xảy ra khi a=b=c=1
Ta có: \(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)(Dấu "="\(\Leftrightarrow x^2=yz\))
Theo đề: x + y + z = 3\(\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)\(\ge x\left(y+z\right)+2x\sqrt{yz}\)
Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự ta có: \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\);\(\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng từng vế của các BĐT trên,ta được:
\(\frac{x}{x+\sqrt{3x+yz}}\)\(+\frac{y}{y+\sqrt{3y+zx}}\)\(+\frac{z}{z+\sqrt{3z+xy}}\le1\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
We have:
\(VT=\Sigma_{cyc}\frac{x}{x+\sqrt{3x+yz}}=\Sigma_{cyc}\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\Sigma_{cyc}\frac{\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}}{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+1}\)
Dat \(\left(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}};\frac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}};\frac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\right)=\left(a;b;c\right)\)
Consider:
\(\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\Sigma_{cyc}\frac{\frac{x}{x+y}+\frac{x}{x+z}}{2}=\frac{3}{2}\)
\(\Rightarrow a+b+c\le\frac{3}{2}\)
Now we need to prove:
\(\Sigma_{cyc}\frac{a}{a+1}\le1\)
\(\Leftrightarrow\Sigma_{cyc}\frac{1}{a+1}\ge2\left(M\right)\)
\(VT_M\ge\frac{9}{a+b+c+3}\ge\frac{9}{\frac{3}{2}+3}=2\)
Sign '=' happen when \(\hept{\begin{cases}x=y=z=1\\a=b=c=\frac{1}{2}\end{cases}}\)
Ta đặt \(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}\Rightarrow ab=1}\)
\(BĐT\Leftrightarrow\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge4\)
Ta có
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+a^2+\frac{1}{a^2}\)
\(=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\left(a-\frac{1}{a}\right)^2+2\)
\(\ge2+2=4\)
bạn chưa chỉ ra dấu bằng xảy ra khi nào