Cho \(\frac{1}{3}\le a,b,c\le3\)
Chứng minh:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{7}{5}\)
Cảm ơn mọi người nha,mình cần gấp à.Bật mí là dùng phương pháp dồn biến ạ(ra biên hoặc toàn miền gì đó ạ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ vế theo vế hai phương trình trên ta có phương trình:
\(y^2-x^2=x^3-y^3-4x^2+4y^2+3x-3y\)
\(\Leftrightarrow\left(x^3-y^3\right)-3\left(x^2-y^2\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3x-3y+3\right)=0\)(1)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-3x-3y+3=0\end{cases}}\)
+)Với \(x-y=0\Leftrightarrow x=y\)
Thế vào 1 trong 2 phương trình ba đầu:
Ta có: \(x^2=x^3-4x^2+3x\Leftrightarrow x^3-5x^2+3x=0\Leftrightarrow x\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5+\sqrt{13}}{2}hoacx=\frac{5-\sqrt{13}}{2}\end{cases}}\)
=> y tự làm nhé
+) Với \(x^2+xy+y^2-3x-3y+3=0\)
Ta có: \(x^2+xy+y^2-3x-3y+3=\left(x^2+2.x.\frac{y}{2}+\frac{y^2}{4}\right)-3\left(x+\frac{y}{2}\right)+\frac{3y^2}{4}-\frac{3y}{2}+3\)
\(=\left(x+\frac{y}{2}\right)^2-2.\left(x+\frac{y}{2}\right).\frac{3}{2}+\frac{9}{4}+3\left(\frac{y^2}{4}-2.\frac{y}{2}.\frac{1}{2}+\frac{1}{4}\right)-\frac{9}{4}-\frac{3}{4}+3\)
\(=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2\ge0\)
"=" xảy ra khi và chỉ khi : \(\hept{\begin{cases}x+\frac{y}{2}-\frac{3}{2}=0\\\frac{y}{2}-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Thế vào 1 trong hai phương trình ban đầu thấy ko thỏa mãn : 1^2=1^3-4.1^2+3.1 vô lí
Kết luận nghiệm:...
Đặt: f(a;b;c) =\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Vai trò của a, b, c là như nhau có thể giả sử: \(a=max\left\{a,b,c\right\}\)
Ta có: \(f\left(a;b;\sqrt{ab}\right)=\frac{a}{a+b}+\frac{b}{b+\sqrt{ab}}+\frac{\sqrt{ab}}{\sqrt{ab}+a}\)
\(=\frac{a}{a+b}+\frac{\sqrt{b}}{\sqrt{b}+\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}+\sqrt{a}}=\frac{a}{a+b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
Ta chứng minh:
\(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)
+) Chứng minh: \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\)
Xét : \(f\left(a;b;c\right)-f\left(a;b;\sqrt{ab}\right)=\frac{b}{b+c}+\frac{c}{a+c}-\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{b\left(a+c\right)\left(\sqrt{a}+\sqrt{b}\right)+c\left(b+c\right)\left(\sqrt{a}+\sqrt{b}\right)-2\sqrt{b}\left(b+c\right)\left(a+c\right)}{\left(b+c\right)\left(a+c\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{ab\sqrt{a}-ab\sqrt{b}+2bc\sqrt{a}-2ac\sqrt{b}+c^2\sqrt{a}-c^2\sqrt{b}}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}-c\right)^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\ge0\)vì a=max{a,b,c} => \(a\ge b\)
=> \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\)(1)
+) Chứng minh:\(f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)
Xét: \(f\left(a;b;\sqrt{ab}\right)-\frac{7}{5}=\frac{a}{a+b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{7}{5}\)\(=\frac{\frac{a}{b}}{\frac{a}{b}+1}+\frac{2}{\sqrt{\frac{a}{b}}+1}-\frac{7}{5}\)(2)
Đặt \(\sqrt{\frac{a}{b}}=x\left(đk:x\le3\right)\)Ta có:
(2)=\(\frac{x^2}{x^2+1}+\frac{2}{x+1}-\frac{7}{5}\)\(=\frac{5x^3+5x^2+10x^2+10-7x^3-7x^2-7x-7}{5\left(x^2+1\right)\left(x+1\right)}\)
\(=\frac{-2x^3+8x^2-7x+3}{5\left(x^2+1\right)\left(x+1\right)}=\frac{\left(3-x\right)\left(2x^2-2x+1\right)}{5\left(x^2+1\right)\left(x+1\right)}\ge0\)
=> \(f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)(3)
Từ (1); (3) => \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)
"=" xảy ra <=> a=3; b=1/3; c=1 và các hoán vị