K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

???ng tr�n c: ???ng tr�n qua B_1 v?i t�m O ???ng th?ng l: ???ng th?ng qua B, I ???ng th?ng l: ???ng th?ng qua B, I ???ng th?ng m: ???ng th?ng qua A, I ???ng th?ng m: ???ng th?ng qua A, I ?o?n th?ng f: ?o?n th?ng [B, C] ?o?n th?ng g: ?o?n th?ng [A, C] ?o?n th?ng h: ?o?n th?ng [A, B] ?o?n th?ng k: ?o?n th?ng [C, D] ?o?n th?ng p: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [M, C] ?o?n th?ng s: ?o?n th?ng [H, J] ?o?n th?ng t: ?o?n th?ng [J, A] ?o?n th?ng a: ?o?n th?ng [J, M] ?o?n th?ng b: ?o?n th?ng [C, J] O = (2.98, -0.72) O = (2.98, -0.72) O = (2.98, -0.72) ?i?m B: ?i?m tr�n c ?i?m B: ?i?m tr�n c ?i?m B: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m A: ?i?m tr�n c ?i?m A: ?i?m tr�n c ?i?m A: ?i?m tr�n c ?i?m D: Giao ?i?m c?a c, i ?i?m D: Giao ?i?m c?a c, i ?i?m D: Giao ?i?m c?a c, i ?i?m I: Giao ?i?m c?a d, k ?i?m I: Giao ?i?m c?a d, k ?i?m I: Giao ?i?m c?a d, k ?i?m K: Giao ?i?m c?a c, l ?i?m K: Giao ?i?m c?a c, l ?i?m K: Giao ?i?m c?a c, l ?i?m M: Giao ?i?m c?a e, n ?i?m M: Giao ?i?m c?a e, n ?i?m M: Giao ?i?m c?a e, n ?i?m H: Giao ?i?m c?a c, m ?i?m H: Giao ?i?m c?a c, m ?i?m H: Giao ?i?m c?a c, m ?i?m J: Giao ?i?m c?a c, r ?i?m J: Giao ?i?m c?a c, r ?i?m J: Giao ?i?m c?a c, r

Cô hướng dẫn nhé. Bài này ta sử dụng tính chất góc có đỉnh nằm trong, trên và ngoài đường tròn.

a. Do \(\widehat{DBC}=\widehat{DIB}\Rightarrow\) cung DB = cung DB + cung KC.

Lại có do CD là phân giác nên \(\widehat{BCD}=\widehat{ACD}\) hay cung BD  = cung DA. Vậy thì cung AK = cung KC hay AK = KC.

Vậy tam giác AKC cân tại K.

b. Xét tam giác ABC có CI và BI đều là các đường phân giác nên AI cũng là phân giác. Vậy AI luôn đi qua điểm chính giữa cung BC. Ta gọi là H.

AI lớn nhất khi  \(AI\perp BC.\)

c. Gọi J là giao ddierm của HO với (O). Khi đó J cố định.

Ta thấy ngay \(\widehat{IAH}=90^o\)

Lại có AI là phân giác góc BAC nên Ạ là phân giác góc MAC. Lại do MAC cân tại A nên MJ = JC.

Vậy M luôn thuộc đường tròn tâm J, bán kinh JC (cố định).

9 tháng 9 2016

hay ko

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0
11 tháng 9 2019

\(3\left(x^2-2x-xy\right)+y^2=0\)

\(\Leftrightarrow3x^2-6x-3xy+y^2=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2x^2-6x-xy=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x^2+2x+1\right)-x-2-xy=0\)

Đến đây thì .....

11 tháng 9 2019

Em thử nha, ko chắc:v

PT \(\Leftrightarrow3x^2-3x\left(2+y\right)+y^2=0\)

\(\Delta=\left[-3\left(2+y\right)\right]^2-12y^2=-3y^2+36y+36\)

\(\Leftrightarrow6-4\sqrt{3}\le y\le6+4\sqrt{3}\). Mà \(y\inℤ\) nên\(0\le y\le12\)

Rồi thay từng số y vào giải pt bậc 2 biến x. 

P/s: Em làm đúng ko ta?

27 tháng 7 2016

pt<=> \(x^4+2x^2+1-2x+2x^3=\left(x^2+1\right)\sqrt{x-x^3}\)

<=> \(\left(x^2+1\right)^2-2\left(x-x^3\right)=\left(x^2+1\right)\sqrt{x-x^3}\)

đặt \(x^2+1=a\left(a\ge1\right)\) và \(\sqrt{x-x^3}=b\left(b\ge0\right)\) thì ta có pt

\(a^2-2b^2=ab\)

<=> \(a^2-ab-2b^2=0\)

<=> \(a^2+ab-2ab-2b^2=0\)

<=> \(a\left(a+b\right)-2b\left(a+b\right)=0\)

<=> \(\left(a-2b\right)\left(a+b\right)=0\)

<=> \(\orbr{\begin{cases}a=2b\\a+b=0\end{cases}}\)

TH1: \(a\ge1;b\ge0=>a+b\ne0\)

TH2: \(a=2b\)

<=>\(x^2+1=2\sqrt{x-x^3}\)

<=> \(x^4+2x^2+1=4x-4x^3\)

<=> \(x^4+4x^3+2x^2-4x+1=0\)

đây là pt đối xứng nên ta thấy x=0 ko là nghiệm của pt nên chia 2 vế cho x^2 ta có 

\(x^2+4x+2-\frac{4}{x}+\frac{1}{x^2}=0\)

đặt \(x-\frac{1}{x}=y\)thì \(x^2+\frac{1}{x^2}=y^2+2\)

khi đó pt trên trở thành 

\(y^2+2+4y+2=0\)

<=> \(y^2+4y+4=0\)

<=>\(\left(y+2\right)^2=0\)

<=> \(y=-2\)

đến đây bạn tự thay vào giải nốt tìm x nha 

t

26 tháng 7 2016

thánh biết

7 tháng 9 2019

Đặt: \(\sqrt[3]{25-x^3}=t\Leftrightarrow t^3+x^3=25\Leftrightarrow\left(t+x\right)^3-3tx\left(t+x\right)=25\)(1)

pt trở thành: 

\(xt\left(x+t\right)=30\) Thế vào (1) ta có:

\(\left(t+x\right)^3-3.30=25\)

<=> \(t+x=\sqrt[3]{115}\)

=> \(xt=\frac{30}{\sqrt[3]{115}}\)

x, t là nghiệm của phương trình bậc 2:

 \(X^2-\sqrt[3]{115}X+\frac{30}{\sqrt[3]{115}}=0\)(1)

Đen ta <0 

=> Phương trình (1) vô nghiệm.

=> Không tồn tại x

Vậy phương trình ban đầu vô nghiệm.

25 tháng 7 2017

a)\(2x^4+2016=x^4\sqrt{x+3}+2016x\)

a)\(pt\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)

\(\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)

\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)=\frac{x^8\left(x+3\right)-4}{x^4\sqrt{x+3}+2}\)

\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)-\frac{\left(x-1\right)\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2\left(x^3+x^2+x-1007\right)-\frac{\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

b)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)

bài này nghiệm khủng :vko liên hp dc, với sợ bị nhai lại nên đưa link tham khảo nhé :v

 Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

c)\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-x-\frac{1}{x}\)

\(pt\Leftrightarrow\sqrt{2-x^2}-1+\sqrt{2-\frac{1}{x^2}}-1=2-x-\frac{1}{x}\)

\(\Leftrightarrow\frac{2-x^2-1}{\sqrt{2-x^2}+1}+\frac{2-\frac{1}{x^2}-1}{\sqrt{2-\frac{1}{x^2}}+1}=-\frac{x^2-2x+1}{x}\)

\(\Leftrightarrow\frac{1-x^2}{\sqrt{2-x^2}+1}+\frac{\frac{x^2-1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x^2-2x+1}{x}=0\)

\(\Leftrightarrow\frac{-\left(x-1\right)\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{\left(x-1\right)\left(x+1\right)}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{\left(x-1\right)^2}{x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{-\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{x+1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x-1}{x}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

2 tháng 11 2017

Đặt \(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\)  = A

Ta có A^2 = \(\left(\sqrt{\left(a-c\right).c}+\sqrt{c.\left(b-c\right)}\right)^2\)

Áp dụng bđt bunhiacopxki ta có A^2 <= \(\left(\sqrt{a-c}^2+\sqrt{c^2}\right).\left(\sqrt{c^2}+\sqrt{b-c^2}\right)\)

                                                       = (a-c+c).(c+b-c) = ab

<=> A<= \(\sqrt{ab}\)=> ĐPCM

Dấu"=" <=> a-c = c và c = b-c

<=> a=b=2c>0

2 tháng 11 2017

Ta có bất đẳng thức bunhicopxki

\(\sqrt{ax}+\sqrt{by}\le\sqrt{\left(a+x\right)\left(b+y\right)}\)

Áp dụng vào ta có:

\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{\left(a-c+c\right)\left(b-c+c\right)}\le\sqrt{ab}\)

Dấu bằng xảy ra khi a-c = b-c

2 tháng 9 2019

\(VT=2\left(x^2-2.x.\frac{11}{4}+\frac{121}{16}\right)+\frac{47}{8}>0\)

=> \(VP>0\)=> x>1

pt <=> \(2\left(x^2-6x+9\right)=3\sqrt[3]{4x-4}-\left(x+3\right)\)

<=> \(2\left(x-3\right)^2=\frac{27\left(4x-4\right)-\left(x+3\right)^3}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\)

<=> \(2\left(x-3\right)^2=\frac{-\left(x+15\right)\left(x-3\right)^2}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\)

<=> \(\left(x-3\right)^2\left(2+\frac{x+15}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\right)=0\)

x>1 => $\(2+\frac{x+15}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}>0\)

pT <=> \(\left(x-3\right)^2=0\)

<=> x=3

2 tháng 9 2019

E cảm ơn

17 tháng 7 2016

tìm số tự nhiên n và k sao cho A là số nguyên tố biết A=  n4 + 42k+1 

31 tháng 8 2019

đéo biết