K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

Thử vài trường hợp đầu:

      16= 42

      1156 = 342

      111556 = 3342

Như vậy có thể gợi ý:

    11...1155..56 = 33..342  (ở đây có n+1 chữ số 1, n chữ số 5 và n chữ số 3)

Ta có nhận xét:

      11..11 11..11        (2n + 2 chữ số 1)

+              44..44       (n + 1  chữ số 4)

                        1

     11..11155..56     (n+1 chữ số 1, n chữ số 5 và 1 chữ số 6)

Vậy 11..11155..56 = 111...1 + 44..44 + 1

\(\frac{99..99}{9}+4\frac{9..9}{9}+1\)

\(\frac{10^{2n+2}}{9}+4\frac{10^{n+1}}{9}+1\)

\(\frac{10^{2n+2}-1}{9}+4\frac{10^{n+1}-1}{9}+1\)

\(\frac{10^{2n+2}+4.10^{n+1}+4}{9}\)

=\(\frac{\left(10^{n+1}\right)^2+4.10^{n+1}+2^2}{9}\)

\(\frac{\left(10^{n+1}+2\right)^2}{9}\)

=\(\left(\frac{10^{n+1}+2}{3}\right)^2\)

\(\left(\frac{100..02}{3}\right)^2\)

= 333...342

16 tháng 7 2015

khó ha? có ai thấy dễ ko?

8 tháng 4 2018

Ta có : 

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)

\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên : 
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\) 

\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(n-2< S< n-1\)

Vì \(n>3\) nên \(S\) không là số tự nhiên 

Vậy \(S\) không là số tự nhiên 

Chúc bạn học tốt ~ 

21 tháng 7 2015

Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.

Với n = 1 thì n2005 + 2005 + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.

Với n > 1 thì đều ra trường hợp không chia hết cho 3.

             Vậy n = 1

21 tháng 7 2015

vi 2005 chia cho 3 du 1 nen 2005n=3k+1

ta chia 3TH:

TH1:n=3k

=>2005n+n2005+2005n=(3k+1+3k+3k) chia cho 3 du 1(loại)

TH2:n=3k+1

=>2005n+n2005+2005n=3k+1+3k+1+3k+1=3(3k+1)chia het cho 3

TH3:n=3k+2

=>2005n+n2005+2005n=3k+1+3k+2+3k+2=3.3k+5chia cho 3 du 1(loai)

vậy n có dang 3k+1 thi 2005n+n2005+2005n chia het cho 3

14 tháng 7 2016

Đặt abcd ta có ab-cd và k  N, 32 bé hơn hoặc bằng k < 100

Suy ra : 101cd = k2 – 100 = (k – 10)(k + 10) =>k + 10chia hết 101 hoặc k – 10 chia hết101

Mà (k – 10; 101) = 1  => k + 10chia hết 101

Vì 32 bé hơn hoặc bằng k < 100 nên 42 bé hơn hoặc bằng k + 10 < 110 => k + 10 = 101 => k = 91

suy ra abcd= 912 = 8281

1 tháng 2 2017

đặt k = gì ghi rõ ra đi

11 tháng 7 2019

Vì \(p^2;q^2\)là số chính phương 

=> \(p^2;q^2\)chia 5 luôn dư 0,1,4

Mà 886 chia 5 dư 1

=> p^2 chia hết cho 5 , q^2 chia 5 dư 1 và ngược lại

Mà p là số nguyên tố

nên \(p=5\)=> \(q=29\)thỏa mãn q là số nguyên tố 

Vậy \(\left(p,q\right)=\left(5;29\right),\left(29;5\right)\)

11 tháng 7 2019

Ta có \(p^2+q^2=866\)

=> \(p^2;q^2\) cùng lẻ hoặc cùng chẵn

Vì p, q là hai số nguyên tố

=> \(p^2;q^2\)cùng lẻ

Ta lại có:  \(p^2+q^2=866\)có chữ số tận cùng là 6

Không mất tính tổng quát : G/s chữ số tận cùng của \(p^2\) lớn hơn hoặc bằng chữ số tận cùng của \(q^2\)

TH1: \(q^2\) có chữ số tận cùng là 1 ; \(p^2\) có chữ số tận cùng là 5

=> \(p^2\) chia hết cho 5 => \(p⋮5\)

=> p=5 => \(p^2=25\Rightarrow25+q^2=866\Rightarrow q^2=841=29^2\Rightarrow q=29\)

=> \(p=5;q=29\) thỏa mãn

TH2:  \(q^2\) có chữ số tận cùng là 3 ; \(p^2\) có chữ số tận cùng là 3 

Trường hợp này loại vì tận cùng của một số chính phương không thể là số 3

TH3:  \(q^2\) có chữ số tận cùng là 7; \(p^2\) có chữ số tận cùng là 9

Trường hợp này loại vì tận cùng của một số chính phương không thể là số 7

Kết luận : p=5; q=29 hoặc p=29;q=5 

                                                                                                                                                                                                                   Bác Tiện không làm thợ sơn. Bác Tiện là em rể của bác thợ hàn nên bác Tiện không làm thợ hàn --> Bác Tiện chỉ có thể là thợ da hoặc thợ điện.

Nếu bác Tiện làm thợ da thì bác Da là thợ điện. Như vậy bác Tiện vừa là em rể của bác thợ tiện vừa là em rể của bác thợ hàn mà vợ bác Tiện chỉ có 2 anh em. Điều

này vô lí.

--> Bác Tiện là thợ điện

Bác Da và bác thợ sơn là 2 anh em cùng họ nên bác Da không phải là thợ sơn. Theo lập luận trên bác Da không là thợ tiện --> Bác Da là thợ hàn.

9 tháng 8 2016

Bác Tiện không làm thợ sơn. Bác Tiện là em rể của bác thợ hàn nên bác Tiện không làm thợ hàn --> Bác Tiện chỉ có thể là thợ da hoặc thợ điện. 
Nếu bác Tiện làm thợ da thì bác Da là thợ điện. Như vậy bác Tiện vừa là em rể của bác thợ tiện vừa là em rể của bác thợ hàn mà vợ bác Tiện chỉ có 2 anh em. Điều này vô lí. 
--> Bác Tiện là thợ điện 
Bác Da và bác thợ sơn là 2 anh em cùng họ nên bác Da không phải là thợ sơn. Theo lập luận trên bác Da không là thợ tiện --> Bác Da là thợ hàn.

8 tháng 7 2019

MÌNH ĐANG RẤT CẦN BÀI TOÁN NÀY !!!!!

8 tháng 7 2019

Ta có \(2^{4k+2}=16^k.4\)

Mà \(16^k\)luôn tận cùng là 6

=> Các số \(...2^{4k+2}\)luôn tận cùng là 4

Tương tự : \(...3^{4k+2}\)tận cùng là 3^2=9

                   \(...4^{4k+2}\)tận cùng là 6

                  \(...5^{4k+2}\)tận cùng là 5

                  ..........................................

                 \(...9^{4k+2}\)tận cùng là 1

=> \(..2^{4k+2}+..3^{4k+2}+...+..9^{4k+2}=..4+..9+..6+..5+...+..1=...4\)

Áp dụng 

=> \(A=\left(2^2+...+9^{30}\right)+...\left(1900^{4k+2}+...+1999^{4k'+2}\right)+\left(2000^{4k''+2}+...+2004\right)^{8010}\)

        \(=...4+...5+...5+...5+...+...5+...0\) 

        \(=...9\)

   Vậy A tận cùng là 9

3 tháng 7 2019

Xét \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)

<=> \(\)\(a^2+b^2+c^2\ge ab+bc+ac\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)luôn đúng

=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)

Dấu bằng xảy ra khi a=b=c

Áp dụng ta có

\(\left(2x+1\right)^2+\left(-y\right)^2+\left(y-2x\right)^2\ge\frac{1}{3}\left(2x+1-y+y-2x\right)^2=\frac{1}{3}=VP\)

Dấu bằng xảy ra khi \(2x+1=-y=y-2x\)=> \(\hept{\begin{cases}x=-\frac{1}{3}\\y=-\frac{1}{3}\end{cases}}\)

Vậy \(x=y=-\frac{1}{3}\)

4 tháng 7 2019

\(\left(2x+1\right)^2+y^2+\left(y-2x\right)^2=\frac{1}{3}\)

\(\Leftrightarrow3\left(x-y\right)^2+\left(3x+1\right)^2=0\)

\(\Leftrightarrow x=y=-\frac{1}{3}\)

3 tháng 7 2019

ĐKXĐ: \(c\ne0\)

Có: \(\hept{\begin{cases}a+\frac{b}{c}=11\\b+\frac{a}{c}=14\end{cases}\Leftrightarrow}a+b+\frac{a+b}{c}=25\)

\(\Leftrightarrow\left(a+b\right)\left(1+\frac{1}{c}\right)=\frac{a+b}{c}\cdot\left(c+1\right)=25\)

Vì \(c+1\ne1\)

nên: \(\frac{a+b}{c}=1\)hoặc \(\frac{a+b}{c}=5\)hoặc \(\frac{a+b}{c}=-5\)