Cho \(\Delta ABC\)có \(\widehat{A}\)tù. Ở miền ngoài tam giác, vẽ các tam giác vuông cân \(BAD\), \(CAE\)( đỉnh \(A\)). Đường cao \(AH\)cắt cạnh \(DE\)tại \(M\). Chứng minh \(MD=ME\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


(Tự vẽ hình)
Vẽ góc ngoài CAx của tam giác ABC => ^CAx=^ABC+^ACB=500+200=700.
Xét tam giác AHC: ^AHC=900=> ^HAC=900-^ACH=900-200=700
=> ^CAx=^HAC => AC là phân giác ^HAx. Mà HD là phân giác ^AHC và D\(\in\)AC
=> BD là phân giác ^ABH => ^ABD=^HBD=^ABC/2=500/2=250.
Vậy ^HBD=250.

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=25\cdot\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)
\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=25\cdot\frac{1}{100}=\frac{25}{100}=\frac{1}{4}\)
\(\Rightarrow A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(1\right)\)
Lại có: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=25\cdot\frac{1}{50}=\frac{25}{50}=\frac{1}{2}\)
\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=25\cdot\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)
\(\Rightarrow A< \frac{1}{2}+\frac{1}{3}=\frac{5}{6}\left(2\right)\)
Từ (1) và (2) => đpcm
\(\Rightarrow\)(1/1.2) + ( 1/ 3.4) + (1/.6) +...+(1/99.100)
\(\Rightarrow\)(\(\frac{1}{1}\)-1/2 +1/3 -1/4 +...+ 1/99 - 1/100)
\(\Rightarrow\)( 1 - 1/100)
\(=\)99/100
Ta có \(\frac{7}{12}\)=0,5833
\(\frac{99}{100}\)=0,99
\(\frac{5}{6}\)=0,8333
Vì 0,99 > 0,8333 > 0,58333
\(\)\(\Leftrightarrow\)\(\frac{99}{100}\)>\(\frac{5}{6}\)>\(\frac{7}{12}\)
Vậy A lớn nhất trong cả 3 số không phải như điều cần chứng minh.

\(\widehat{CAI}+\widehat{A_1}=90^0\)mà \(\Delta CAI\)vuông tại I có \(\widehat{CAI}+\widehat{C_1}=90^0\Rightarrow\widehat{A_1}=\widehat{C_1}\)
\(\Delta CAI,\Delta ABH\)lần lượt vuông tại I,H có CA = AB ; \(\widehat{C_1}=\widehat{A_1}\)(cmt)\(\Rightarrow\Delta CAI=\Delta ABH\left(ch-gn\right)\)=> CI = AH ; AI = BH
\(\Delta ABC\)vuông cân tại A có \(\widehat{B_2}=45^0\)và trung tuyến AM cũng là đường cao và là phân giác
\(\Rightarrow\widehat{MAB}=45^0\Rightarrow\Delta MAB\)vuông cân tại M => MA = MB
\(\Delta AMD,\Delta BHD\)lần lượt vuông tại M,H có \(\hept{\begin{cases}\widehat{A_2}+\widehat{D_1}=90^0\\\widehat{B_1}+\widehat{D_2}=90^0\\\widehat{D_1}=\widehat{D_2}\left(đđ\right)\end{cases}\Rightarrow\widehat{A_2}=\widehat{B_1}}\)
\(\Delta AIM,\Delta BHM\)có AI = BH ; AM = BM ; \(\widehat{A_2}=\widehat{B_1}\Rightarrow\Delta AIM=\Delta BHM\left(c.g.c\right)\)=> IM = HM (1)
\(\widehat{M_1}=\widehat{M_3}\)mà \(\widehat{M_1}+\widehat{M_2}=90^0\Rightarrow\widehat{M_3}+\widehat{M_2}=90^0\Rightarrow\widehat{IMH}=90^0\left(2\right)\)
Từ (1) và (2),ta có \(\Delta IMH\)vuông cân tại M nên \(HI=\sqrt{2}MI=2017\sqrt{2}\)

\(=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}\right)-2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{a-4}+2+\sqrt{a-4}-2}{1-\frac{4}{a}}\)
\(=\frac{2a}{\sqrt{a-4}}\)

Ta có:
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)
\(=x^6-2016x^5-x^5+2016x^4+x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2017\)
\(=x^5\left(x-2016\right)-x^4\left(x-2016\right)+x^3\left(x-2016\right)-x^2\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+1\)
Thay x = 2016 vào ta được giá trị biểu thức trên bằng 1
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\) (1)
Thay 2017 = x+1 vào (1) ,có :
\(x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
= \(x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
= 1

TA CÓ:
A = \(\frac{1}{2^2}+\frac{2}{2^3}+...+\frac{2016}{2^{2017}}\)
=> 2A = \(\frac{2.1}{2^2}+\frac{2.2}{2^3}+...+\frac{2016.2}{2^{2017}}\)
= \(\frac{1}{2}+\frac{2}{2^2}+...+\frac{2016}{2^{2016}}\)
=> 2A - A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)
=> A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)
ĐẶT B = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
TA CÓ 2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
=> 2B - B = B = \(1-\frac{1}{2^{2016}}< 1\)
=> A < 1 ( ĐPCM)

Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a\ge b\ge1\\c\ge d\ge1\end{cases}}\)
Theo đề bài thì \(\hept{\begin{cases}a+b=cd\\ab=c+d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b\ge c\\ab\le2c\end{cases}}\)
\(\Rightarrow a+b\ge c\ge\frac{ab}{2}\)
\(\Rightarrow ab\le2\left(a+b\right)\le4a\)
\(\Rightarrow1\le b\le4\)
Tương tự ta cũng tìm được
\(1\le d\le4\)
Kết hợp lại rồi lập bảng chọn ra giá trị thỏa mãn là xong.
D A B C E M F K H
Giải:
Kẻ \(EF⊥AH,DK⊥AH\)
Ta có: \(\widehat{BAH}+\widehat{ABH}=90^o\left(\widehat{AHB}=90^o\right)\)
\(\widehat{BAH}+\widehat{DAK}=90^o\left(\widehat{BAD}=90^o\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DAK}\)
Xét \(\Delta ABH,\Delta DAK\) có:
\(\widehat{ABH}=\widehat{DAK}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{DKA}=90^o\)
AB = AD ( gt )
\(\Rightarrow\Delta ABH=\Delta DAK\) ( c.huyền - g.nhọn )
\(\Rightarrow DK=AH\) ( cạnh t/ứng )
Tương tự \(\Rightarrow EF=AH\)
Lại có: \(\widehat{DMK}+\widehat{MDK}=90^o\left(\widehat{MKD}=90^o\right)\)
\(\widehat{EMF}+\widehat{MEF}=90^o\left(\widehat{EKM}=90^o\right)\)
Mà \(\widehat{DMK}=\widehat{EMF}\) ( đối đỉnh )
\(\Rightarrow\widehat{MDK}=\widehat{MEF}\)
Xét \(\Delta DKM,\Delta EFM\) có:
DK = EF ( = AH )
\(\widehat{MDK}=\widehat{MEF}\left(cmt\right)\)
\(\widehat{MKD}=\widehat{MFE}=90^o\)
\(\Rightarrow\Delta DKM=\Delta EFM\left(g-c-g\right)\)
\(\Rightarrow MD=ME\) ( cạnh t/ứng )
\(\Rightarrowđpcm\)
Giải:
Kẻ EF⊥AH,DK⊥AH
Ta có: ^BAH+^ABH=90o(^AHB=90o)
^BAH+^DAK=90o(^BAD=90o)
⇒^ABH=^DAK
Xét ΔABH,ΔDAK có:
^ABH=^DAK(cmt)
^AHB=^DKA=90o
AB = AD ( gt )
⇒ΔABH=ΔDAK ( c.huyền - g.nhọn )
⇒DK=AH ( cạnh t/ứng )
Tương tự ⇒EF=AH
Lại có: ^DMK+^MDK=90o(^MKD=90o)
^EMF+^MEF=90o(^EKM=90o)
Mà ^DMK=^EMF ( đối đỉnh )
⇒^MDK=^MEF
Xét ΔDKM,ΔEFM có:
DK = EF ( = AH )
^MDK=^MEF(cmt)
^MKD=^MFE=90o
⇒ΔDKM=ΔEFM(g−c−g)
⇒MD=ME ( cạnh t/ứng )