Cho tam giác ABC vuông ở A (AB< AC), D là điểm trên cạnh AC sao cho góc DBC bằng 45 độ. Vẽ DE vuông góc với BC tại E. Tính số đo góc BAE?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Sửa đề: \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7
Ta có:
\(1961\text{≡}\left(mod7\right)\Rightarrow1961^{1962}\text{≡}1\left(mod7\right)\left(I\right)\)
Ta có:
\(3^6\text{≡}1\left(mod7\right)\Rightarrow\left(3^6\right)^{327}\text{≡}1\left(mod7\right)\)
\(\Rightarrow9.\left(3^6\right)^{327}\text{≡}9\text{≡}2\left(mod7\right)\Rightarrow3^{1964}\text{≡}2\left(mod7\right)\)
Mà \(1963\text{≡}3\left(mod7\right)\Rightarrow1963^{1964}\text{≡}3^{1964}\text{≡}2\left(mod7\right)\left(II\right)\)
Ta có:
\(1965\text{≡}5\left(mod7\right)\Rightarrow1965^{1966}\text{≡}5^{1966}\left(mod7\right)\)
Mà ta lại có: \(\hept{\begin{cases}5^6\text{≡}1\left(mod7\right)\\5^4\text{≡}2\left(mod7\right)\end{cases}\Rightarrow}\left(5^6\right)^{327}.5^4=5^{1966}\text{≡}2\left(mod7\right)\)
\(\Rightarrow1965^{1966}\text{≡}5^{1966}\text{≡}2\left(mod7\right)\left(III\right)\)
Từ (I), (II), (III) thì ra suy ra:
\(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}\left(1+2+2+2\right)\left(mod7\right)\)
Hay \(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}7\text{≡}0\left(mod7\right)\)
Vậy \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7) có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7) vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7) Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7) do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7) Cộng lại ta có S ≡ 14 ≡ 0 (mod 7) Hay ta có đpcm

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)
Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có
\(a^3+b^2+2015|a+b|=2017\)
+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

có : A+ABJ=180-BJA (1)
JBC + JCB = 180-BJC (2)
JCD+JDC=180-CJD (3)
JDE+JED=180-EJD (4)
JEF+JFE=180-EJD (5)
JFG+JGF=180-FJG (6)
CỘNG TỪNG VẾ CỦA (1),(2),(3),(4),(5),(6) TA CÓ :
A+B+C+D+E+F+G=1080-(BJA+BJC+CJD+EJD+EJF+FJG)
=1080-(720-AJD-DJG)
=1080-(720-113)
=473

A B C E F O F M D I 1 2 1 1 1 2 1 1 2 1
a) Gọi giao điểm của d và BC là F thì FB = FC. \(\Delta OFB,\Delta OFC\)vuông tại F có FB = FC ; OF chung
\(\Rightarrow\Delta OFB=\Delta OFC\left(2cgv\right)\)=> OB = OC (2 cạnh tương ứng)
\(\Delta OAE,\Delta OAF\)lần lượt vuông tại E,F có OA chung ;\(\widehat{A_1}=\widehat{A_2}\)(AO là phân giác góc BAC)\(\Rightarrow\Delta OAE=\Delta OAF\left(ch-gn\right)\)=> OE = OF (2 cạnh tương ứng)
\(\Delta OBE,\Delta OCF\)lần lượt vuông tại E,F có OB = OC ; OE = OF\(\Rightarrow\Delta OBE=\Delta OCF\left(ch-cgv\right)\)
=> BE = CF (2 cạnh tương ứng)
b) Kẻ BD // AC (D thuộc EF) thì\(\widehat{D_1}=\widehat{MFC};\widehat{B_1}=\widehat{C_1}\)(2 cặp góc slt)
AE = AF (2 cạnh tương ứng của\(\Delta OAE=\Delta OAF\)) nên\(\Delta AEF\)cân tại A
\(\Rightarrow\widehat{E_1}=\widehat{F_1}\)mà\(\widehat{D_2}=\widehat{F_1}\)(2 góc đồng vị của MD // AC)\(\Rightarrow\widehat{E_1}=\widehat{D_2}\Rightarrow\Delta BDE\)cân tại B => BD = BE = CF
\(\Delta MBD,\Delta MCF\)có\(\widehat{B_1}=\widehat{C_1};\widehat{D_1}=\widehat{MFC}\); BD = CF\(\Rightarrow\Delta MBD=\Delta MCF\left(g.c.g\right)\)
=> MB = MC (2 cạnh tương ứng) => M là trung điểm BC
c)\(\Delta IAE,\Delta IAF\)có AE = AF ; AI chung ;\(\widehat{A_1}=\widehat{A_2}\Rightarrow\Delta IAE=\Delta IAF\left(c.g.c\right)\)
\(\Rightarrow\widehat{I_1}=\widehat{I_2}\)(2 góc tương ứng) mà\(\widehat{I_1}+\widehat{I_2}\)= 1800 (2 góc kề bù)\(\Rightarrow\widehat{I_1}=90^0\Rightarrow AO⊥EF\)tại I
Áp dụng định lí Pi-ta-go vào các tam giác vuông\(\Delta IAE,\Delta IAF,\Delta IOE,\Delta IOF,\Delta AFO,\Delta AEO\),ta lần lượt có :
IA2 + IE2 = AE2 (1) ; IA2 + IF2 = AF2 (2) ; IE2 + IO2 = EO2 (3) ; IF2 + IO2 = OF2 (4) ; AE2 + EO2 = AO2 ; AF2 + FO2 = AO2
Cộng (1),(2),(3),(4),vế theo vế,ta có : 2(IA2 + IE2 + IO2 + IF2) = (AE2 + EO2) + (AF2 + FO2) (= 2AO2)
=> IA2 + IE2 + IO2 + IF2 = AO2
P/S : Câu a có thể chứng minh OB = OC như sau : O thuộc trung trực của BC nên OB = OC

a) d = -9b nên P(3) = 27a + 9b + 3c + d = 27a + 3c ; P(-3) = -27a + 9b - 3c + d = -27a - 3c
=> P(3).P(-3) = (27a + 3c)(-27a - 3c) = -(27a + 3c)2\(\le0\)
b) Để\(A\in Z\)thì\(n+1⋮n^2+2\)nên bội của n + 1 là (n + 1)(n - 1) chia hết cho n2 + 2
\(\Rightarrow n^2+2-3⋮n^2+2\Rightarrow3⋮n^2+2\)mà\(n^2+2\ge2\)=> n2 + 2 = 3 => n2 = 1 => n = -1 ; 1.Thử lại :
n | -1 | 1 |
n + 1 | 0 | 2 |
n2 + 2 | 3 | 3 |
A | 0 (chọn) | \(\frac{2}{3}\)(loại) |
Vậy n = -1

\(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2025}-\sqrt{2024}}\)
Ta nhận xét thấy mỗi số hạng trong S đều dương. Từ đó ta đặt
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2024}-\sqrt{2023}}\left(A>0\right)\)
\(\Rightarrow S=A+\frac{1}{\sqrt{2025}-\sqrt{2024}}=A+\frac{\sqrt{2025}+\sqrt{2024}}{\left(\sqrt{2025}-\sqrt{2024}\right)\left(\sqrt{2025}+\sqrt{2024}\right)}\)
\(=A+\sqrt{2025}+\sqrt{2024}>\sqrt{2025}=45\)
Vậy \(S>45\)
PS: Phan Thanh Tịnh xem lại bài giải nhé bạn
Ta có : 1 = (n + 1) - n =\(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\)
\(=\left(\sqrt{n+1}\right)^2-\sqrt{n+1}.\sqrt{n}+\sqrt{n+1}.\sqrt{n}+\left(\sqrt{n}\right)^2\)
\(=\sqrt{n+1}.\left(\sqrt{n+1}-\sqrt{n}\right)+\sqrt{n}.\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n-1}+\sqrt{n}\right)\)\
\(\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Áp dụng vào bài toán,ta có :
\(S=\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2025}-\sqrt{2024}=\sqrt{2025}\)= 45
Vậy S = 45

Ta có:
\(a_2^2=a_1.a_3;a_3^2=a_2.a_4;...;a^2_{2010}=a_{2009}.a_{2011}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2009}}{a_{2010}}=\frac{a_{2010}}{a_{2011}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2010}}{a_{2011}}\)
\(\Rightarrow\frac{a_1^{2010}}{a_2^{2010}}=\frac{a_2^{2010}}{a_3^{2010}}=...=\frac{a_{2010}^{2010}}{a_{2011}^{2010}}=\frac{a_1^{2010}+a_2^{2010}+...+a_{2010}^{2010}}{a_2^{2010}+a_3^{2010}+...+a_{2011}^{2010}}\) (1)
Ta lại có:
\(\frac{a_1^{2010}}{a_2^{2010}}=\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2009}}{a_{2010}}.\frac{a_{2010}}{a_{2011}}=\frac{a_1}{a_{2011}}\) (2)
Từ (1) và (2) ta suy ra
\(\frac{a_1^{2010}+a_2^{2010}+...+a_{2010}^{2010}}{a_2^{2010}+a_3^{2010}+...+a_{2011}^{2010}}=\frac{a_1}{a_{2011}}\)
Ta có :
\(a_2^2=a_1.a_3\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\)
\(a^2_3=a_2.a_4\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
\(............\)
\(a^2_{2010}=a_{2009}.a_{2011}\Rightarrow\frac{a_{2009}}{a_{2010}}=\frac{a_{2010}}{a_{2011}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=........=\frac{a_{2009}}{a_{2010}}=\frac{a_{2010}}{a_{2011}}\)
Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.......=\frac{a_{2010}}{a_{2011}}=k\)
\(\Rightarrow a_1=a_2.k\)
\(\Rightarrow a_1=a_3.k^2\)
\(\Rightarrow a_1=a_4.k^3\)
\(...............\)
\(\Rightarrow a_1=a_{2011}.k^{2010}\)
\(\Rightarrow\frac{a_1}{a_{2011}}=k^{2010}\) (1)
Ta có : \(k^{2010}=\left(\frac{a_1}{a_2}\right)^{2010}=\left(\frac{a_2}{a_3}\right)^{2010}=...=\left(\frac{a_{2010}}{a_{2011}}\right)^{2010}=\frac{a_1^{2010}}{a_2^{2010}}=\frac{a_2^{2010}}{a_3^{2010}}=....=\frac{a_{2010}^{2010}}{a_{2011}^{2010}}\)
\(=\frac{a_1^{2010}+a_2^{2010}+a_3^{2010}+....+a^{2010}_{2010}}{a_2^{2010}+a_3^{2010}+a_4^{2010}+....+a_{2011}^{2010}}\) ( theo TC DTSBN ) (2)
Từ (1) ; (2) \(\Rightarrow\frac{a_1^{2010}+a_2^{2010}+....+a_{2010}^{2010}}{a_2^{2010}+a_3^{2010}+....+a_{2011}^{2010}}=\frac{a_1}{a_{2011}}\) (đpcm)

xy+yz+xz=2xyz
<=>(xy+yz+xz)/(xyz)=2xyz/(xyz)
<=>1/z+1/x+1/y=2 (1)
Giả sử x<hoặc=y<hoặc=z
=>1/x>hoặc bằng 1/y>hoặc bằng 1/z
=>1/x+1/x+1/x>hoặc=2
=>3/x>=2
Mà x thuộc N*
=>x=<1
=>x=1
Thay vào (1),ta được:
1/z+1+1/y=2
=>1/y+1/z=1 (2)
=>1/y+1/y>=1
=>2/y>=1
=>y=<2
=>y=2 hoặc y=1
+ y=1
Thay vào (2)
1/1+1/z=1
=>1/z=0 (loại)
+ y=2
Thay vào (2)
1/2+1/z=1
=>z=2 (thỏa mãn)
Vậy (x;y;z)=(1;2;2)và các hoán vị của chúng
A B C D E O M
Gọi O là trung điểm BD. Kéo dài AO, cắt BC tại M.
Do \(\widehat{DBE}=45^o\Rightarrow\Delta BED\) vuông cân tại E, vậy thì \(\widehat{BOE}=45^o.\)
Do tam giác BED vuông tại E; O là trung điểm BD nên theo tính chất đường trung tuyến ứng với cạnh huyền, ta có:
\(OB=OD=OE\)(1)
Do tam giác BAD vuông tại A; O là trung điểm BD nên theo tính chất đường trung tuyến ứng với cạnh huyền, ta có:
\(OB=OD=OA\left(2\right)\)
Từ (1) và (2) ta có OA = OB = OD = OE.
Xét tam giác cân AOB, theo tính chất góc ngoài tam giác:
\(\widehat{BAO}+\widehat{ABO}=\widehat{BOM}\Leftrightarrow2\widehat{BAO}=\widehat{BOM}\)
Tương tự : \(2\widehat{OAE}=\widehat{MOE}\)
Vậy nên \(2\left(\widehat{BAO}+\widehat{OAE}\right)=\widehat{BOM}+\widehat{MOE}\)
\(\Leftrightarrow2\widehat{BAE}=\widehat{BOE}=90^o\Rightarrow\widehat{BAE}=45^o.\)
45 độ, em mới lớp 5 thôi đấy, smart chưa