K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)

\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)

Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:

Với \(n=4k\left(2k\right)!\) thì:

\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)

\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)

\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.

20 tháng 9 2016

Viết rõ đề ra đc không?

20 tháng 9 2016

Có: \(\frac{a^2}{1-a}=\frac{a^2-1+1}{1-a}=\frac{a^2-1}{1-a}+\frac{1}{1-a}=-\left(a+1\right)+\frac{1}{1-a}\)
Suy ra:
\(\frac{a^2}{1-a}+\frac{b^2}{1-b}+\frac{1}{a+b}+a+b\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}+a+b-a-1-b-1\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\).
 Áp dụng bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}\ge\frac{9}{1-a+1-b+a+b}=\frac{9}{2}\).
Suy ra: \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\ge\frac{9}{2}-2=\frac{5}{2}.\)
Vậy ta có đpcm.
 

20 tháng 9 2016

năm nữa mk giải cho

17 tháng 9 2016

dễ mà bài này quá dễ

17 tháng 9 2016

Phan Văn Hiếu:làm đi trước khi nói

16 tháng 9 2016

Đề đúng phải là chứng minh hai điểm P và P2 đối xứng với nhau qua O nhé, còn P1 và P2 đối xứng nhau qua trục d2 

P P1 P2 O d1 d2 A B

Gọi A và B lần lượt là các điểm mà P đối xứng với P1 qua qua d1 , P1 đối xứng P2 qua d2

Để chứng minh P và P2 đối xứng với nhau qua O , ta chỉ cần chứng minh OP = OP2 và P,O,P2 thẳng hàng.

Xét hai tam giác vuông : Tam giác PAO và tam giác OBP2 có OB = PA (Vì PA = AP1 , AOP1B là hình chữ nhật)

góc POA = góc OP2B (đồng vị) => tam giác OBP2 = tam giác PAO => OP = OP2 (1)

góc OP2B = góc PAO mà góc OP2B + góc BOP2 = 90 độ => góc PAO + góc BOP2 = 90 độ

=> Góc POP2 = góc BOP2 + góc AOB + góc PAO = 90 độ + 90 độ = 180 độ

=> Ba điểm P,O,P2 thẳng hàng (2)

Từ (1) và (2) ta có điều phải chứng minh.

16 tháng 9 2016

d1 d2 P P1 P2 O 2 1 M N 3

MO vuông góc d1 ,P1P vuông góc d1 (vì P1,P đối xứng qua d1) nên MO // P1P => góc O1 = góc P (2 góc đồng vị)

Tam giác ONP vuông tại N nên góc O2 + góc P = 900 => góc O2 + góc O1 = 900 mà góc O3 = 900 (d1 vuông góc d2

=> góc P2OP = góc O1 + góc O2 + góc O3 = 900 + 900 = 1800 => P2,O,P thẳng hàng (1)

OP1 = OP2 (P1,P2 đối xứng qua d2 hay d2 là trung trực P1P2) ; OP1 = OP (P,P1 đối xứng qua d1 hay d1 là trung trực PP1)

=> OP2 = OP (2) .Từ (1) và (2),ta có O là trung điểm của PP2 hay P1,P2 đối xứng qua O.

11 tháng 9 2016

minh ko hieu cho lam

11 tháng 9 2016

Ta có:

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(t=x^2+5xy+5y^2\) ta đc:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4\)

\(=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên \(x^2\in Z;5xy\in Z;5y^2\in Z\)

\(\Rightarrow x^2+5xy+5y^2\in Z\)

Đpcm

10 tháng 9 2016

Vậy chắc đề là với \(x\in Z\)nhỉ?

Ta có :

\(\left(x-1\right)^3+x^3+\left(x+1\right)^3\)

\(=\left(x^3-3x^2+3x-1\right)+\left(x^3+3x^2+3x+1\right)+x^3\)

\(=3x^3+6x\)

\(=3x\left(x^2+2\right)\)

Ta cần chứng minh \(x\left(x^2+2\right)\)là bội của 3.

Đặt 3 trường hợp :

TH1 : \(x=3k\)

Như vậy \(x\left(x^2+2\right)=3k\left(x^2+2\right)\)chia hết cho 3.

TH2 : \(x=3k+1\)

\(\Rightarrow x^2+2=\left(3k+1\right)^2+2\)

\(=9k^2+1+6k+2\)

\(=3\left(3k^2+2k+1\right)\)chia hết cho 3

Như vậy \(x\left(x^2+2\right)\)chia hết cho 3.

TH3 : \(x=3k+2\)

\(\Rightarrow x^2+2=\left(3k+2\right)^2+2\)

\(=9k^2+12k+4+2\)

\(=3\left(3k^2+4k+2\right)\)chia hết cho 3

Như vậy \(x\left(x^2+2\right)\)chia hết cho 3.

\(\Rightarrow\left(x-1\right)^3+x^3+\left(x+1\right)^3\)chia hết cho 9.

Vậy ...

10 tháng 9 2016

Với x=1/3 => sai , bạn còn thiếu đk r :))

9 tháng 9 2016

Bạn không đọc được chỗ nào thì hỏi mình nhé!

14202505_196677564085401_3755596186107477164_n.jpg?oh=1f6d41e5a2a30edb03f9d21850e5db2f&oe=584C82AE

14224742_196677560752068_2216094156173405898_n.jpg?oh=c8f60cd763fcf785b82e0a8a62ca3cb8&oe=5848349E

9 tháng 9 2016

gửi bằng ảnh chụp ntn vậy bạn??

6 tháng 9 2016

A B C D E H I K K

BAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)

Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)

Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.

Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)

Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)

Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ 

Từ  (2), (4) và (6) suy ra IH=HK 

Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)

10 tháng 9 2016

BAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)

Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)

Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.

Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)

Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)

Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ 

Từ  (2), (4) và (6) suy ra IH=HK 

Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)

10 tháng 9 2016

đơn giản quá ,  nó thuộc dường tròn qua hinh chữ nhật \ ma

\