Gọi [x] là phần nguyên của số thực x. Tính giá trị của biểu thức:
\(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{212041}\right]\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
ta có:\(\left(\sqrt{a}-\sqrt{b}\right)\ge0\)
\(\Rightarrow a-2\sqrt{ab}+b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
dấu "=" xảy ra khi a=b
TH1: Điểm M nằm trên nửa mặt phẳng bờ AB không chứa điểm C và N nằm trên nửa mặt phẳng bờ AC không chứa điểm B.
A B C M N I K
Ta có: AM vuông góc với AB => ^MAB=900, CN vuông góc với AC => ^NAC=900
=> ^MAB=^NAC=900 => ^MAB+^BAC=^NAC+^BAC => ^MAC=^BAN.
Xét tam giác MAC và tam giác BAN có:
AM=AB
^MAC=^BAN => Tam giác MAC=Tam giác BAN (c.g.c)
AC=AN
=> ^AMC=^ABN (2 góc tương ứng) hay ^AMK=^ABI và MC=BN (2 cạnh tương ứng)
MC=BN => 1/2MC=1/2BN. Mà I là trung điểm của BN, K là trung điểm của MC => MK=KC=BI=IN.
Xét tam giác MAK và tam giác BAI có:
MK=BI
^AMK=^ABI => Tam giác MAK=Tam giác BAI (c.g.c)
AM=AB
=> AK=AI (2 cạnh tương ứng) (đpcm)
=> ^MAK=^BAI (2 góc tương ứng) => ^MAB+^BAK=^IAK+^BAK => ^MAB=^IAK (Bớt 2 vế đi ^BAK)
Mà ^MAB=900 => ^IAK=900 => AI vuông góc với AK (đpcm)
TH2: M nằm trên nửa mặt phẳng bờ AB có chứa điểm C, N nằm trên nửa mặt phẳng bờ AC có chứa điểm B.
A B C M N I K
Ta có: ^BAM=^BAC+^CAM=900 (1)
^CAN=^BAC+^NAB=900 (2)
Từ (1) và (2) => ^BAC+^CAM=^BAC+^NAB => ^CAM=^NAB (Bớt 2 vế đi ^BAC)
Xét tam giác CAM và tam giác NAB có:
AM=AB
^CAM=^NAB => Tam giác CAM=Tam giác NAB (c.g.c)
AC=AN
=> ^AMC=^ABN (2 góc tương ứng) hay ^AMK=^ABI và CM=NB (2 cạnh tương ứng)
CM=NB => 1/2CM=1/2NB => MK=KC=BI=IN.
Xét tam giác AMK và tam giác ABI có:
AM=AB
^AMK=^ABI => Tam giác AMK=Tam giác ABI (c.g.c)
MK=BI
=> AK=AI (2 cạnh tương ứng) (đpcm) và ^MAK=^BAI (2 góc tương ứng)
Ta có: ^BAC+^CAK+^MAK=^BAM=900. Thay ^MAK=^BAI vào biểu thức bên, ta được:
^BAC+^CAK+BAI=900 => ^IAK=900 (Cộng góc) => AI vuông góc với AK (đpcm)
Đặt T = 12 + 22 + ... + 102 = 385
=> T x 22 = 12. 22 + 22. 22 + ... + 102.22 = 385. 22
=> T x 22 = (1.2)2 + (2. 2)2 + ... + (10.2)2 = 385. 22
=> T x 22 = (2)2 + (4)2 + ... + (20)2 = 385. 22
=> T x 22 = S = 385. 22
=> S = 385 x 4
Cách đổi số thập phân vô hạn tuần hoàn sang phân số (số hữu tỉ) như sau:
1) Trường hợp có 1 chữ số lặp lại:
Ví dụ: 0,(6) = p/q ?
0,(6) = 0,666....
Đặt a = 0,(6)
=> 10. a = 0,666... x 10 = 6,666.... = 6 + 0,666... = 6 + a
=> 10. a = 6 + a
9.a = 6
a = 6/9 = 2/3
2) Trường hợp có 2 số lặp lại:
Ví dụ là số trong đầu bài:
2,4(13) thì ta có thể tách phần không lặp và phần lặp lại như sau:
2,4(13) = 2,4 + 0,0(13) = 24/10 + 0,(13)/10 = 24/10 + 1/10 x 0,(13)
Đặt a = 0,(13) = 0,131313....
=> a x 100 = 13,1313.... = 13 + 0,1313... = 13 + a
=> a x100 = 13 + a
=> 99 x a = 13
=> a = 13/99
Vậy:
2,4(13) = 24/10 + 1/10 x 13/99
= 24/10 + 13/990
= 2389/990
Gọi x là phân số cần tìm.
Ta có:
x=2,4(13)
=>10x =24,(13)
=>1000x=2413,(13)
Vậy:
1000x-10x=2413,(13)-24,(13)
=>990x=2389
=>x=2389/990
Vậy số đó là 2389/990
Tổng 3 số 38, 45 và 67 là:
38 + 45 + 67 = 150
A lớn hơn trung bình cộng của cả 4 số => Ta có sơ đồ sau:
Tổng 3 số: 150 A Trung bình cộng 9 3 lần Trung bình cộng = 150 + 9
=> 3 lần Trung bình cộng = 150 + 9 = 159
=> Trung bình cộng = 159 : 3 = 53
=> A = Trung bình cộng + 9 = 53 + 9 = 62
giỏi wá'''''''''''!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ABCD+ABC+AB+A
=Ax1000+Bx100+Cx10+D+Ax100+Bx10+C+Ax10+B+A
=Ax(1000+100+10+1)+Bx(100+10+1)+Cx(10+1)+D
=Ax1111+Bx111+Cx11+D
ABCD+ABC+AB+A
=Ax1000+Bx100+Cx10+D+Ax100+Bx10+C+Ax10+B+A
=Ax(1000+100+10+1)+Bx(100+10+1)+Cx(10+1)+D
=Ax1111+Bx111+Cx11+D
Đặt \(A=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{212041}\right]\)
\(=\left(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]\right)+\left(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]\right)+\left(\left[\sqrt{9}\right]+...+\left[\sqrt{15}\right]\right)+...+\left(\left[\sqrt{210681}\right]+...+\left[\sqrt{211599}\right]\right)+\left(\left[\sqrt{211600}\right]+\left[\sqrt{212041}\right]\right)\)
Theo cách chia nhóm như trên, nhóm 1 có 3 số, nhóm 2 có 5 số, nhóm 3 có 7 số, nhóm 4 có 9 số, ..., nhóm 459 có 919 số, nhóm cuối cùng có 442 số. Các số thuộc nhóm 1 bằng 1, các số thuộc nhóm 2 bằng 2, các số thuộc nhóm 3 bằng 3, ..., các số thuộc nhóm 459 bằng 459, Các số thuộc nhóm cuối cùng bằng 460.
Do đó \(A=1.3+2.5+3.7+...+459.919+460.442\)
\(=1\left(1.2+1\right)+2.\left(2.2+1\right)+3.\left(3.2+1\right)+...+459.\left(459.2+1\right)+203320\)
\(=\left(2.1^2+1\right)+\left(2.2^2+1\right)+\left(2.3^2+1\right)+...+\left(2.459^2+1\right)+203320\)
\(=2.\left(1^2+2^2+3^2+...+459^2\right)+\left(1+2+3+...+459\right)+203320\)
\(=2.\frac{1}{6}.459.460.919+105570+203320=64988110\)
123hehe321