Cho hình thang ABCD có góc BAD = góc CBD. Biết AB = 4cm; DC = 9cm.
a) Chứng minh tam giác ABD ~ tam giác BDC. Tính BD
b) Vẽ BE // AD cắt AC tại E. Chứng minh AB.AD = DC.BE
c) Vẽ À // BC cắt BD tại F. Chứng minh EF // DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M N P 3 4 H D K
a, Xét tam giác NMP vuông tại M, có đường cao MH
Áp dụng định lí Py ta go ta có :
\(NP^2=MN^2+MP^2=9+16=25\Rightarrow NP=5\)cm
Vì ND là đường phân giác nên : \(\frac{MN}{NP}=\frac{MD}{DP}\)mà \(DP=MP-MD=4-MD\)
hay \(\frac{3}{5}=\frac{MD}{4-MD}\Rightarrow12-3MD=5MD\)
\(\Leftrightarrow8MD=12\Leftrightarrow MD=\frac{12}{8}=\frac{3}{2}\)cm
b, Xét tam giác MHN và tam giác MNP ta có :
^NHM = ^NMP = 900
^N _ chung
Vậy tam giác MHN ~ tam giác MNP ( g.g )
c, Xét tam giác NDM và tam giác NKH ta cs :
^MNP = ^NHK = 900
\(\frac{MN}{NH}=\frac{MK}{KH}\)( NK là đường phân giác )
Vậy tam giác NDM ~ tam giác NKH ( c.g.c )
\(\Rightarrow\frac{ND}{NK}=\frac{NM}{NH}\)( tỉ số đồng dạng ) \(\Rightarrow ND.NH=NM.NK\)
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow abc\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
CHÚC BẠN HỌC TỐT
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
Vậy \(E=0\)
Xin lỗi bạn , mình mới học lớp 5 thôi nên cũng không biết gì ...
~~~ Chúc bạn học giỏi ~~~
-Dạng 1: Phương trình tích.
a) \(2x\left(x+1\right)=x^2-1\)\(\Leftrightarrow2x\left(x+1\right)=\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x+1\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy phương trình có nghiệm duy nhất : x = -1
b) \(x^3+3x^2-2x-2=0\)\(\Leftrightarrow\left(x^3-x^2\right)+\left(4x^2-4x\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+4x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[\left(x+2\right)^2-2\right]\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+2\right)^2-2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x+2\right)^2=2\\x=1\end{cases}}}\)
Xét phương trình \(\left(x+2\right)^2=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=\sqrt{2}\\x+2=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-2\\x=-\sqrt{2}-2\end{cases}}}\)
Vậy phương trình có tập nghiệm : \(S=\left\{1;\pm\sqrt{2}-2\right\}\)
Dạng 2 ; Phương trình chứa ẩn ở mẫu.
\(\frac{3}{1-5x}+\frac{5}{3-5x}=\frac{x-27}{\left(5x-1\right)\left(5x-3\right)}\left(ĐKXĐ:x\ne\frac{1}{5};x\ne\frac{3}{5}\right)\)
\(\Leftrightarrow\frac{3}{1-5x}+\frac{5}{3-5x}=\frac{x-27}{\left(1-5x\right)\left(3-5x\right)}\)(phần này bạn nhớ đọc kĩ bên vế phải)
\(\Leftrightarrow\frac{3\left(3-5x\right)}{\left(1-5x\right)\left(3-5x\right)}+\frac{5\left(1-5x\right)}{\left(3-5x\right)\left(1-5x\right)}=\frac{x-27}{\left(1-5x\right)\left(3-5x\right)}\)
\(\Rightarrow3\left(3-5x\right)+5\left(1-5x\right)=x-27\)
\(\Leftrightarrow9-15x+5-25x=x-27\)
\(\Leftrightarrow14-40x=x-27\)
\(\Leftrightarrow-40x-x=-27-14\)
\(\Leftrightarrow-41x=-41\)
\(\Leftrightarrow x=1\)(thỏa mãn ĐKXĐ)
Vậy phương trình có nghiệm duy nhất : x = 1.
ta có
((x-a)(x-b))/((c-a)(c-b))+((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))=(( x-a)(x-b)(b-a)+(x-b)(x-c)(c-b)-(x-c)(x-a)(c-a))/((c-a)(c-b)(b-a))
=> mẫu là (c-a)(c-b)(b-a) (1)
ta có (x-a)(x-b)(b-a)
= (x-a)(x-b)( b-c+c-a)
=(x-a)(x-b)(b-c) + (x-a)(x-b)(c-a)
=> phần tử : (x-a)(x-b)(b-c)+ (x-b)(x-c)(c-b) + (x-a)(x-b)(c-a)- (x-c)(x-a)(c-a)
=(b-c)(x-b)(x-a-x+c) + (x-a)(c-a)(x-b-x+c)
=(c-a)(b-c)(x-b) +(x-a)(c-a)(c-b)
=(c-a)(c-b)(-x+b+x-a)=(c-a)(c-b)(b-a) (2)
từ (1);(2)=> tử/mẫu= ((c-a)(c-b)(b-a))/((c-a)(c-b)(b-a))=1 (đpcm)
\(|x-1|=|x+2|\)
Nếu x>=1; ta có:
x-1= x+2 -> vô nghiệm
Nếu x<1 và x>=-2. ta có:
-x+1=x+2-> x=-1/2
Nếu x<-2; ta có
-x+1= -x-2 -> Vô nghiệm.
Vậy đáp số x=-1/2
| x - 1 | = | x + 2 |
Với x < -2 pt <=> -( x - 1 ) = -( x + 2 ) <=> -x + 1 = -x - 2 ( vô nghiệm :)) )
Với -2 ≤ x < 1 pt <=> -( x - 1 ) = x + 2 <=> -x + 1 = x + 2 <=> -2x = 1 <=> x = -1/2 ( tm )
Với x ≥ 1 pt <=> x - 1 = x + 2 ( vô nghiệm :)) )
Vậy phương trình có nghiệm duy nhất x = -1/2
A B C O D E F
\(\frac{OA}{AD}=\frac{S_{AOB}}{S_{ABD}}=\frac{S_{AOC}}{S_{ACD}}=\frac{S_{AOB}+S_{AOC}}{SABC}\)
Tương tự rồi cộng lại ta đc
\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=\frac{2\left(S_{AOB}+S_{BOC}+S_{COA}\right)}{S_{ABC}}=2\)
Bài Giải
Đặt SBOC=x2,SAOC=y2,SAOB=z2 ⇒SABC=SBOC+SAOC+SAOB=x2+y2+z2
Ta có : ADOD =SABCSBOC =AO+ODOD =1+AOOD =x2+y2+z2x2 =1+y2+z2x2
⇒AOOD =y2+z2x2 ⇒√AOOD =√y2+z2x2 =√y2+z2x
Tương tự ta có √OBOE =√x2+z2y2 =√x2+z2y ;√OCOF =√x2+y2z2 =√x2+y2z
⇒P=√x2+y2z +√y2+z2x +√x2+z2y ≥x+y√2z +y+z√2x +x+z√2y
=1√2 [(xy +yx )+(yz +zy )+(xz +zx )]≥1√2 (2+2+2)=3√2
Dấu "=" xảy ra khi x=y=z⇒SBOC=SAOC=SAOB=13 SABC
⇒ODOA =OEOB =OFOC =13 ⇒O là trọng tâm của tam giác ABC
Vậy MinP=3√2 khi O là trọng tâm của tam giác ABC
A B C D 4 9 E I
a, Xét tam giác ABD và tam giác BDC ta có :
^BAD = ^CBD ( gt )
^ABD = ^BDC ( so le trong )
Vậy tam giác ABD ~ tam giác BDC ( g.g )
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\)( tỉ số đồng dạng ) \(\Rightarrow BD^2=AB.DC=4.9=36\)
\(\Rightarrow BD=\sqrt{36}=6\)cm
b, Gọi giao điểm AC và BD là I
Xét tam giác BIE và tam giác AID có : BE // AD
Theo hệ quả Ta lét ta có : \(\frac{BI}{ID}=\frac{IE}{IA}=\frac{BE}{AD}\)
Xét tam giác AIB và tam giác DIC có AB // CD ( ABCD là hình thang )
\(\frac{AI}{IC}=\frac{IB}{ID}=\frac{AB}{DC}\)
mà \(\frac{BE}{AC}=\frac{AB}{DC}=\frac{IB}{ID}\Rightarrow BE.DC=AB.AC\)